多态json的spark处理

w1e3prcc  于 2021-07-14  发布在  Spark
关注(0)|答案(1)|浏览(417)

考虑以下json输入:

{
  "common": { "type":"A", "date":"2020-01-01T12:00:00" },
  "data": {
    "name":"Dave",
    "pets": [ "dog", "cat" ]
  }
}
{
  "common": { "type": "B", "date":"2020-01-01T12:00:00" },
  "data": {
    "whatever": { "X": {"foo":3}, "Y":"bar" },
    "favoriteInts": [ 0, 1, 7]
  }
}

我熟悉 json-schema 我可以这样形容 data 子结构可以是 name,petswhatever,favoriteInts . 我们使用 common.type 用于标识类型的字段。
这在spark模式定义中可能吗?初步试验的思路如下:

schema = StructType([
        StructField("common", StructType(common_schema)), # .. because the type is consistent                                       
        StructField("data", StructType())  # attempting to declare a "generic" struct
    ])
    df = spark.read.option("multiline", "true").json(source, schema)

不起作用;一读到 data struct包含,嗯,任何东西,但在这个特殊的例子中2个字段,我们得到:

+--------------------+----+                                                     
|              common|data|
+--------------------+----+
|{2020-01-01T12:00...|  {}|
+--------------------+----+

并尝试提取任何指定字段 No such struct field <whatever> . 将“generic struct”从 schema def完全生成一个没有任何字段名的Dataframe data ,别管里面的田地。
除此之外,我最终会尝试这样做:

df = spark.read.json(source)

def processA(frame):
    frame.select( frame.data.name )  # we KNOW name exists for type A
    ...

def processB(frame):
    frame.select( frame.data.favoriteInts )  # we KNOW favoriteInts exists for type B
    ...

processA( df.filter(df.common.type == "A") )
processB( df.filter(df.common.type == "B") )
tkclm6bt

tkclm6bt1#

您可以使用嵌套的和可为空的类型(通过指定 True )以适应不确定性。

from pyspark.sql.types import StructType, StringType, ArrayType, StructField, IntegerType

data_schema = StructType([
    # Type A related attributes
    StructField("name",StringType(),True), # True implies nullable
    StructField("pets",ArrayType(StringType()),True),

   # Type B related attributes
    StructField("whatever",StructType([
        StructField("X",StructType([
            StructField("foo",IntegerType(),True)
        ]),True),
        StructField("Y",StringType(),True)
    ]),True), # True implies nullable
    StructField("favoriteInts",ArrayType(IntegerType()),True),
])
schema = StructType([
        StructField("common", StructType(common_schema)), # .. because the type is consistent                                       
        StructField("data", data_schema)  
])

相关问题