我正在使用pyspark2.4.1,并试图用下面所示的pandas udf编写一个简单的函数。基本上创建一个新列并根据 df.x=='a'
以及 df.y=='t'
. 然而,我不断地 Method __getstate__([]) does not exist
错误。以下是我尝试过的两种使用Pandas自定义项的方法,但不确定还有哪些方法可以编写:
数据
x = pd.Series(['a', 'b', 'c'])
y = pd.Series(['t','t','t'])
df = spark.createDataFrame(pd.DataFrame({"x":x,"y":y}))
df.show()
+---+---+
| x| y|
+---+---+
| a| t|
| b| t|
| c| t|
+---+---+
尝试1:
from pyspark.sql.functions import pandas_udf, PandasUDFType
from pyspark.sql.types import StringType
import pandas as pd
@pandas_udf(StringType(), PandasUDFType.SCALAR)
def test_fun(x: str, y: str) -> pd.Series:
import os
os.environ["ARROW_PRE_0_15_IPC_FORMAT"] = "1"
if x.values=='a' and y.values=='t':
return z == 'ok'
else:
return z == "None"
return pd.Series(z)
df.withColumn('test',test_fun(col("x"),col("y"))).show()
尝试2
def test_func(df):
@pandas_udf(StringType(), PandasUDFType.SCALAR)
def test(x: str, y: str) -> pd.Series:
import os
os.environ["ARROW_PRE_0_15_IPC_FORMAT"] = "1"
if x.values=='a' and y.values=='t':
return z == 'ok'
else:
return z == "None"
return pd.Series(z)
return df.withColumn('test', test(col('x'),col('y')))
test_func(df)
两个都给了我同样的错误信息:
...py4j.protocol.Py4JError: An error occurred while calling t.__getstate__. Trace:
py4j.Py4JException: Method __getstate__([]) does not exist
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:318)
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:326)
at py4j.Gateway.invoke(Gateway.java:274)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
我对spark还很陌生,读了很多有类似问题的线程,但却找不出正确的修改方法。
暂无答案!
目前还没有任何答案,快来回答吧!