通过使用foreach方法处理旧Dataframe来创建新的pysparkDataframe时出现pickle错误

eyh26e7m  于 2021-07-14  发布在  Spark
关注(0)|答案(1)|浏览(626)

给定PyparkDataframe given_df ,我需要用它来生成一个新的Dataframe new_df 从它那里。
我正在尝试使用 foreach() 方法。为了简单起见,假设Dataframe given_df 以及 new_df 由单个列组成。
我必须处理这个Dataframe的每一行,并基于该单元格中存在的值,创建一些新行并将其添加到 new_dfunion 把它和排成一排。处理一行数据时要生成的行数 given_df 是可变的。

new_df=spark.createDataFrame([], schema=['SampleField']) // Create an empty dataframe initially

given_df.foreach(func) // given_df already contains some data loaded. Now I run a function for each row.

def func(row):
    rows_to_append = getNewRowsAfterProcessingCurrentRow(row)
    global new_df // without this line, the next line will result in an error, because it will think that new_df is a local variable and we are trying to access it without defining it first.
    new_df=new_df.union(spark.createDataFrame(data=rows_to_append, schema=['SampleField'])

但是,这会导致pickle错误。
如果union函数被注解掉,则不会发生错误。

PicklingError: Could not serialize object: Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.

Traceback (most recent call last):
  File "/databricks/spark/python/pyspark/serializers.py", line 476, in dumps
    return cloudpickle.dumps(obj, pickle_protocol)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 1097, in dumps
    cp.dump(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 356, in dump
    return Pickler.dump(self, obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 437, in dump
    self.save(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 789, in save_tuple
    save(element)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 500, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 843, in _batch_appends
    save(x)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 500, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 843, in _batch_appends
    save(x)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 500, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 843, in _batch_appends
    save(x)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 500, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 846, in _batch_appends
    save(tmp[0])
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 500, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 846, in _batch_appends
    save(tmp[0])
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 500, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 819, in save_list
    self._batch_appends(obj)
  File "/databricks/python/lib/python3.7/pickle.py", line 846, in _batch_appends
    save(tmp[0])
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 495, in save_function
    self.save_function_tuple(obj)
  File "/databricks/spark/python/pyspark/cloudpickle.py", line 729, in save_function_tuple
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 549, in save
    self.save_reduce(obj=obj, *rv)
  File "/databricks/python/lib/python3.7/pickle.py", line 662, in save_reduce
    save(state)
  File "/databricks/python/lib/python3.7/pickle.py", line 504, in save
    f(self, obj) # Call unbound method with explicit self
  File "/databricks/python/lib/python3.7/pickle.py", line 859, in save_dict
    self._batch_setitems(obj.items())
  File "/databricks/python/lib/python3.7/pickle.py", line 885, in _batch_setitems
    save(v)
  File "/databricks/python/lib/python3.7/pickle.py", line 524, in save
    rv = reduce(self.proto)
  File "/databricks/spark/python/pyspark/context.py", line 356, in __getnewargs__
    "It appears that you are attempting to reference SparkContext from a broadcast "
Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.

为了更好地理解我要做的事情,让我举一个例子来说明一个可能的用例:
让我们说 given_df 是一个句子的数据框架,其中每个句子由一些单词组成,单词之间用空格隔开。

given_df=spark.createDataframe([("The old brown fox",), ("jumps over",), ("the lazy log",)], schema=["SampleField"])

新的-df是一个Dataframe,每个字在不同的行中组成。所以我们将处理每一行 given_df 根据我们通过拆分行得到的单词,我们将把每一行插入 new_df .

new_df=spark.createDataFrame([("The",), ("old",), ("brown",), ("fox",), ("jumps",), ("over",), ("the",), ("lazy",), ("dog",)], schema=["SampleField"])
mi7gmzs6

mi7gmzs61#

您试图在不允许的执行器上使用DataFrameAPI,因此 PicklingError :
picklingerror:无法序列化对象:异常:似乎您正试图从广播变量、操作或转换引用sparkcontext。sparkcontext只能在驱动程序上使用,不能在工作程序上运行的代码中使用。有关更多信息,请参阅spark-5063。
你应该重写你的代码。例如,您可以使用 RDD.flatMap 或者,如果您喜欢DataFrameAPI, explode() 功能。
下面是如何使用后一种方法:

given_df=spark.createDataFrame([("The old brown fox",), ("jumps over",), ("the lazy log",)], schema=["SampleField"])

from pyspark.sql.functions import udf, explode
from pyspark.sql.types import ArrayType, StringType

@udf(returnType=ArrayType(StringType()))
def getNewRowsAfterProcessingCurrentRow(str):
  return str.split()

new_df= given_df\
  .select(explode(getNewRowsAfterProcessingCurrentRow("SampleField")).alias("SampleField"))\
  .unionAll(given_df)

new_df.show()

你把衣服包起来 getNewRowsAfterProcessingCurrentRow()udf() . 这只会使您的函数在dataframeapi中可用。
然后,使用另一个名为 explode() . 这是必需的,因为您希望将拆分的句子“分解”(或转置)到多行,每行一个单词。
最后,获取结果Dataframe并将其与原始Dataframe合并 given_df .
输出:

+-----------------+
|      SampleField|
+-----------------+
|              The|
|              old|
|            brown|
|              fox|
|            jumps|
|             over|
|              the|
|             lazy|
|              log|
|The old brown fox|
|       jumps over|
|     the lazy log|
+-----------------+

相关问题