Flink1.11 flinkkafkaconsumer在Flink1.12成功时无法传播水印

62o28rlo  于 2021-07-15  发布在  Flink
关注(0)|答案(1)|浏览(376)

我看到一些奇怪的行为。我使用flink1.12编写了一些flink处理器,并试图让它们在amazonemr上工作。不过,amazonemr目前只支持flink1.11.2。当我去降级,我发现,莫名其妙的,水印不再传播。
主题上只有一个分区,并行度设置为1。有什么我不知道的吗?我觉得我有点疯了。
以下是flink 1.12的输出:

Topic:input partitions=1
(name=input, internal=false, partitions=(partition=0, leader=mycomputer:9092 (id: 0 rack: null), replicas=mycomputer:9092 (id: 0 rack: null), isr=mycomputer:9092 (id: 0 rack: null)), authorizedOperations=null)
{
  "nodes" : [ {
    "id" : 1,
    "type" : "Source: Custom Source",
    "pact" : "Data Source",
    "contents" : "Source: Custom Source",
    "parallelism" : 1
  }, {
    "id" : 2,
    "type" : "Process",
    "pact" : "Operator",
    "contents" : "Process",
    "parallelism" : 1,
    "predecessors" : [ {
      "id" : 1,
      "ship_strategy" : "FORWARD",
      "side" : "second"
    } ]
  } ]
}
Topic:input partitions=1
(name=input, internal=false, partitions=(partition=0, leader=mycomputer:9092 (id: 0 rack: null), replicas=mycomputer:9092 (id: 0 rack: null), isr=mycomputer:9092 (id: 0 rack: null)), authorizedOperations=null)
Assigning timestamp 86400000
Source [timestamp=86400000 watermark=-9223372036854775808] test message
Emitting watermark 0
Assigning timestamp 864000000
Source [timestamp=864000000 watermark=0] test message
Emitting watermark 777600000
Assigning timestamp 8640000000
Source [timestamp=8640000000 watermark=777600000] test message
Emitting watermark 8553600000
Assigning timestamp 86400000000
Source [timestamp=86400000000 watermark=8553600000] test message
Emitting watermark 86313600000
Assigning timestamp 9223372036854775807
Source [timestamp=9223372036854775807 watermark=86313600000] test message
Emitting watermark 9223372036768375807

下面是flink 1.11的输出:

Topic:input partitions=1
(name=input, internal=false, partitions=(partition=0, leader=mycomputer:9092 (id: 0 rack: null), replicas=mycomputer:9092 (id: 0 rack: null), isr=mycomputer:9092 (id: 0 rack: null)), authorizedOperations=null)
{
  "nodes" : [ {
    "id" : 1,
    "type" : "Source: Custom Source",
    "pact" : "Data Source",
    "contents" : "Source: Custom Source",
    "parallelism" : 1
  }, {
    "id" : 2,
    "type" : "Process",
    "pact" : "Operator",
    "contents" : "Process",
    "parallelism" : 1,
    "predecessors" : [ {
      "id" : 1,
      "ship_strategy" : "FORWARD",
      "side" : "second"
    } ]
  } ]
}
Topic:input partitions=1
(name=input, internal=false, partitions=(partition=0, leader=mycomputer:9092 (id: 0 rack: null), replicas=mycomputer:9092 (id: 0 rack: null), isr=mycomputer:9092 (id: 0 rack: null)), authorizedOperations=null)
Assigning timestamp 86400000
Source [timestamp=0 watermark=-9223372036854775808] test message
Emitting watermark 0
Assigning timestamp 864000000
Source [timestamp=0 watermark=-9223372036854775808] test message
Emitting watermark 777600000
Assigning timestamp 8640000000
Source [timestamp=0 watermark=-9223372036854775808] test message
Emitting watermark 8553600000
Assigning timestamp 86400000000
Source [timestamp=0 watermark=-9223372036854775808] test message
Emitting watermark 86313600000
Assigning timestamp 9223372036854775807
Source [timestamp=0 watermark=-9223372036854775808] test message
Emitting watermark 9223372036768375807

下面是将其公开的集成测试:

package mytest;

import java.io.FileInputStream;
import java.io.InputStream;
import java.io.IOException;

import java.nio.file.Files;
import java.nio.file.Paths;

import java.text.SimpleDateFormat;

import java.util.Arrays;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.TimeUnit;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

import kafka.server.KafkaConfig;
import kafka.server.KafkaServer;

import kafka.utils.MockTime;
import kafka.utils.TestUtils;

import kafka.zk.EmbeddedZookeeper;

import org.apache.flink.api.common.eventtime.TimestampAssigner;
import org.apache.flink.api.common.eventtime.TimestampAssignerSupplier;
import org.apache.flink.api.common.eventtime.Watermark;
import org.apache.flink.api.common.eventtime.WatermarkGenerator;
import org.apache.flink.api.common.eventtime.WatermarkGeneratorSupplier;
import org.apache.flink.api.common.eventtime.WatermarkOutput;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.JobExecutionResult;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.core.execution.JobClient;
import org.apache.flink.runtime.client.JobCancellationException;
import org.apache.flink.runtime.testutils.MiniClusterResourceConfiguration;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.ProcessFunction.Context;
import org.apache.flink.streaming.api.TimerService;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.test.util.MiniClusterWithClientResource;
import org.apache.flink.util.Collector;
import org.apache.kafka.clients.admin.AdminClient;
import org.apache.kafka.clients.admin.CreateTopicsResult;
import org.apache.kafka.clients.admin.DescribeTopicsResult;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.clients.admin.TopicDescription;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.Serializer;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.apache.kafka.common.serialization.StringSerializer;
import org.apache.kafka.streams.StreamsConfig;

import org.junit.*;

public class FailTest {
    public Properties getKafkaConsumerProperties() {
        Properties result = new Properties();
        result.put(StreamsConfig.APPLICATION_ID_CONFIG, "test-application");
        result.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        result.put("group.id", "0");
        result.put("enable.auto.commit", "true");
        result.put("auto.commit.interval.ms", "1000");
        result.put("session.timeout.ms", "30000");
        return result;
    }

    public Properties getProducerProperties() {
        // Use Kafka provided properties
        Properties result = new Properties();
        result.put("bootstrap.servers", "localhost:9092");
        result.put("compression.type", "none");
        return result;
    }

    public Properties getServerProperties(int port) {
        // Use Kafka provided properties
        Properties result = new Properties();
        result.put("broker.id", "0");
        result.put("num.network.threads", "3");
        result.put("num.io.threads", "8");
        result.put("socket.send.buffer.bytes", "102400");
        result.put("socket.recv.buffer.bytes", "102400");
        result.put("num.partitions", "1");
        result.put("offset.topic.replication.factor", "1");
        result.put("transaction.state.log.replication.factor", "1");
        result.put("transaction.state.log.min.isr", "1");
        result.put("log.retention.hours", "168");
        result.put("log.segment.bytes", "1073741824");
        result.put("log.retention.check.interval.ms", "300000");
        result.put("zookeeper.connect", "localhost:" + port);
        result.put("zookeeper.connection.timeout.ms", "18000");
        result.put("group.initial.rebalance.delay.ms", "0");

        String path = "target/kafka-logs/run.";
        int index = 0;
        while (!Files.notExists(Paths.get(path + String.valueOf(index)))) {
            index += 1;
        }
        result.put("log.dirs", path + String.valueOf(index));
        return result;
    }

    public void printTopics(AdminClient admin, String inputTopic) throws Exception {
        Map<String, TopicDescription> topics = admin.describeTopics(Arrays.asList(inputTopic)).all().get();
        for (Map.Entry<String, TopicDescription> topic : topics.entrySet()) {
            System.out.printf("Topic:%s partitions=%d\n", topic.getValue().name(), topic.getValue().partitions().size());
            System.out.println(topic.getValue().toString());
        }
    }

    @ClassRule
    public static MiniClusterWithClientResource flinkCluster =
        new MiniClusterWithClientResource(
            new MiniClusterResourceConfiguration.Builder()
                .setNumberSlotsPerTaskManager(1)
                .setNumberTaskManagers(1)
                .build());

    @Test
    public void testFail() throws Exception {
        StringSerializer stringSerializer = new StringSerializer();
        StringDeserializer stringDeserializer = new StringDeserializer();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        EmbeddedZookeeper zooKeeper = new EmbeddedZookeeper();
        KafkaServer server = TestUtils.createServer(new KafkaConfig(getServerProperties(zooKeeper.port())), new MockTime());
        AdminClient admin = AdminClient.create(getProducerProperties());

        String inputTopic = "input";

        Map<String, String> configs = new HashMap<>();
        int partitions = 1;
        short replication = 1;

        CreateTopicsResult result = admin.createTopics(Arrays.asList(
            new NewTopic(inputTopic, partitions, replication).configs(configs)
        ));
        result.all().get();

        printTopics(admin, inputTopic);

        // Some subscription events
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(getProducerProperties(), stringSerializer, stringSerializer);
        producer.send(new ProducerRecord<String, String>(inputTopic, 0, Time.days(1).toMilliseconds(), "0", "test message"));
        producer.send(new ProducerRecord<String, String>(inputTopic, 0, Time.days(10).toMilliseconds(), "0", "test message"));
        producer.send(new ProducerRecord<String, String>(inputTopic, 0, Time.days(100).toMilliseconds(), "0", "test message"));
        producer.send(new ProducerRecord<String, String>(inputTopic, 0, Time.days(1000).toMilliseconds(), "0", "test message"));
        producer.send(new ProducerRecord<String, String>(inputTopic, 0, Long.MAX_VALUE, "0", "test message"));
        producer.flush();
        producer.close();

        FlinkKafkaConsumer<String> source = new FlinkKafkaConsumer<String>(inputTopic, new SimpleStringSchema(), getKafkaConsumerProperties());
        source.setStartFromEarliest();
        source.assignTimestampsAndWatermarks(
            new WatermarkStrategy<String>() {
                @Override
                public TimestampAssigner<String> createTimestampAssigner(TimestampAssignerSupplier.Context context) {
                    return new TimestampAssigner<String>() {
                        @Override
                        public long extractTimestamp(String event, long recordTimestamp) {
                            System.out.printf("Assigning timestamp %d\n", recordTimestamp);
                            return recordTimestamp;
                        }
                    };
                }

                @Override
                public WatermarkGenerator<String> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
                    return new WatermarkGenerator<String>() {
                        public long latestWatermark = Long.MIN_VALUE;

                        @Override
                        public void onEvent(String event, long timestamp, WatermarkOutput output) {
                            long eventWatermark = timestamp - Time.days(1).toMilliseconds();
                            if (eventWatermark > latestWatermark) {
                                System.out.printf("Emitting watermark %d\n", eventWatermark);
                                output.emitWatermark(new Watermark(eventWatermark));
                                latestWatermark = eventWatermark;
                            }
                        }

                        @Override
                        public void onPeriodicEmit(WatermarkOutput output) {
                        }
                    };
                }
            });

        env.addSource(source)
            .process(new ProcessFunction<String, String>() {
                @Override
                public void processElement(String value, Context ctx, Collector<String> out) {
                    System.out.printf("Source ");
                    if (ctx != null) {
                        TimerService srv = ctx.timerService();
                        Long timestampLong = ctx.timestamp();
                        long timestamp = 0;
                        if (timestampLong != null) {
                            timestamp = timestampLong;
                        }
                        long watermark = 0;
                        if (srv != null) {
                            watermark = srv.currentWatermark();
                        }
                        System.out.printf("[timestamp=%d watermark=%d] ", timestamp, watermark);
                    }

                    System.out.println(value);
                    out.collect(value);
                }
            });

        System.out.println(env.getExecutionPlan());
        JobClient client = null;
        try {
            client = env.executeAsync("Fail Test");
        } catch (Exception e) {
            e.printStackTrace();
            throw e;
        }

        printTopics(admin, inputTopic);

        TimeUnit.SECONDS.sleep(5);
        client.cancel().get(5, TimeUnit.SECONDS);

        try {
            server.shutdown();
            zooKeeper.shutdown();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
xqk2d5yq

xqk2d5yq1#

结果是Flink1.12将timecharacteristic默认为eventtime,并且不推荐使用整个timecharacteristic流。因此,要降级到flink 1.11,必须添加以下语句来配置streamexecutionenvironment。

env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

相关问题