sql—如何在不丢失信息的情况下,将具有相同id的多条记录的表重新格式化为每个id具有一条记录的表?

qfe3c7zg  于 2021-08-09  发布在  Java
关注(0)|答案(1)|浏览(418)

基本上,我想把这个(初始)转换成这个(最终)。换句话说,我想
“挤压”初始表,以便每个id只有一条记录
“扩展”初始表,这样我就不会丢失任何信息:从初始表为源和列的每个可能组合创建一个不同的列(创建c1_a,c1_b,…)。
我可以在python(可能是pandas)中将初始表作为csv使用,并手动硬编码初始表和最终表之间的Map。但是,我觉得这个解决方案一点也不优雅,我对sql/sas解决方案更感兴趣。有什么办法吗?
编辑:我想改变什么

+----+--------+------+-----+------+
| ID | source |  c1  | c2  |  c3  |
+----+--------+------+-----+------+
|  1 | A      |  432 |  56 |    1 |
|  1 | B      |   53 |   3 |   73 |
|  1 | C      |    7 | 342 |   83 |
|  1 | D      |  543 |  43 |   73 |
|  2 | A      |    8 | 882 |   39 |
|  2 | B      |    5 |  54 |   46 |
|  2 | C      |    8 |   3 | 2226 |
|  2 | D      |   87 |   2 |   45 |
|  3 | A      |   93 | 143 |   45 |
|  3 | B      | 1023 |  72 |    8 |
|  3 | C      |    3 |   3 |  704 |
|  4 | A      |    2 |   5 |    0 |
|  4 | B      |   78 | 888 |    2 |
|  4 | C      |   87 |  23 |   34 |
|  4 | D      |  112 |   7 |  712 |
+----+--------+------+-----+------+

进入

+----+------+------+------+------+------+------+------+------+------+------+------+------+
| ID | c1_A | c1_B | c1_C | c1_D | c2_A | c2_B | c2_C | c2_D | c3_A | c3_B | c3_C | c3_D |
+----+------+------+------+------+------+------+------+------+------+------+------+------+
|  1 |  432 |   53 |    7 |  543 |   56 |    3 |  342 |   43 |    1 |   73 |   83 |   73 |
|  2 |    8 |    5 |    8 |   87 |  882 |   54 |    3 |    2 |   39 |   46 | 2226 |   45 |
|  3 |   93 | 1023 |    3 |      |  143 |   72 |    3 |      |   45 |    8 |  704 |      |
|  4 |    2 |   78 |   87 |  112 |    5 |  888 |   23 |    7 |    0 |    2 |   34 |  712 |
+----+------+------+------+------+------+------+------+------+------+------+------+------+
kknvjkwl

kknvjkwl1#

放弃希望?

data want;
input 
  ID   source $  c1    c2     c3;datalines;
   1   A         432    56      1  
   1   B          53     3     73  
   1   C           7   342     83  
   1   D         543    43     73  
   2   A           8   882     39  
   2   B           5    54     46  
   2   C           8     3   2226  
   2   D          87     2     45  
   3   A          93   143     45  
   3   B        1023    72      8  
   3   C           3     3    704  
   4   A           2     5      0  
   4   B          78   888      2  
   4   C          87    23     34  
   4   D         112     7    712  
;

* one to grow you oh data;

proc transpose data=want out=stage1;
  by id source;
  var c1-c3;
run;

* and one to shrink;

proc transpose data=stage1 out=want(drop=_name_) delim=_;
  by id;
  id _name_ source;
run;

相关问题