我有两个接口: Normalizer
及 ScoringSummary
详情如下:
标准化器:
public interface Normalizer {
/**
* Accepts a <code>csvPath</code> for a CSV file, perform a Z-Score normalization against
* <code>colToStandardize</code>, then generate the result file with additional scored column to
* <code>destPath</code>.
*
* @param csvPath path of CSV file to read
* @param destPath path to which the scaled CSV file should be written
* @param colToStandardize the name of the column to normalize
* @return
*/
ScoringSummary zscore(Path csvPath, Path destPath, String colToStandardize);
/**
* Accepts a <code>csvPath</code> for a CSV file, perform a Min-Max normalization against
* <code>colToNormalize</code>, then generate the result file with additional scored column to
* <code>destPath</code>.
*
* @param csvPath path of CSV file to read
* @param destPath path to which the scaled CSV file should be written
* @param colToNormalize the name of the column to normalize
* @return
*/
ScoringSummary minMaxScaling(Path csvPath, Path destPath, String colToNormalize);
}
轻蔑摘要:
public interface ScoringSummary {
public BigDecimal mean();
public BigDecimal standardDeviation();
public BigDecimal variance();
public BigDecimal median();
public BigDecimal min();
public BigDecimal max();
}
这是tdd的一个函数:
@Test
public void givenMarksCSVFileToScale_whenMarkColumnIsZScored_thenNewCSVFileIsGeneratedWithAdditionalZScoreColumn() throws IOException {
String filename = "marks.csv";
Path induction = Files.createTempDirectory("induction");
String columnName = "mark";
Path csvPath = induction.resolve(filename);
Path destPath = induction.resolve("marks_scaled.csv");
copyFile("/marks.csv", csvPath);
Assertions.assertTrue(Files.exists(csvPath));
Normalizer normalizer = normalizer();
ScoringSummary summary = normalizer.zscore(csvPath, destPath, columnName);
Assertions.assertNotNull(summary, "the returned summary is null");
Assertions.assertEquals(new BigDecimal("66.00"), summary.mean(), "invalid mean");
Assertions.assertEquals(new BigDecimal("16.73"), summary.standardDeviation(), "invalid standard deviation");
Assertions.assertEquals(new BigDecimal("280.00"), summary.variance(), "invalid variance");
Assertions.assertEquals(new BigDecimal("65.00"), summary.median(), "invalid median");
Assertions.assertEquals(new BigDecimal("40.00"), summary.min(), "invalid min value");
Assertions.assertEquals(new BigDecimal("95.00"), summary.max(), "invalid maximum value");
Assertions.assertTrue(Files.exists(destPath), "the destination file does not exists");
Assertions.assertFalse(Files.isDirectory(destPath), "the destination is not a file");
List<String> generatedLines = Files.readAllLines(destPath);
Path assertionPath = copyFile("/marks_z.csv", induction.resolve("marks_z.csv"));
List<String> expectedLines = Files.readAllLines(assertionPath);
assertLines(generatedLines, expectedLines);
}
如何在一个java类中实现这两个接口?我是否需要依赖项或其他框架来解析csv?
1条答案
按热度按时间waxmsbnn1#
处理csv数据不一定需要依赖项或框架。但是,使用现有库要比自己实现所有功能容易得多。
有许多不同的方法来实现这两个接口。您的实现只需要履行他们的合同。以下是一些例子:
两个独立的班级
带有嵌套scoringsummary实现的normalizer实现
实现normalizer和scoringsummary的单个类