Paddle get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.

5m1hhzi4  于 2021-11-29  发布在  Java
关注(0)|答案(6)|浏览(327)

如果您没有查询到相似问题,为快速解决您的提问,建立issue时请提供如下细节信息:

  • 标题:简洁、精准概括您的问题,例如“Insufficient Memory xxx" ”
  • 版本、环境信息:

   1)PaddlePaddle版本:fluid 1.4 /fluid 1.3
   2)CPU:MPI集群
   4)系统环境:paddleCloud

  • 训练信息:job-0bb5d071a13a2f60

主函数代码如下,参考ctr例子写的分布式ernie的分类fine tune

import os
import time
import multiprocessing

import paddle.fluid as fluid
from multiprocessing import cpu_count

import reader.task_reader as task_reader
from model.ernie import ErnieConfig
from finetune.classifier import create_model, evaluate
from optimization import optimization
from utils.args import print_arguments
from utils.init import init_pretraining_params, init_checkpoint
from finetune_args import parser
import numpy as np

def train_loop(args, train_program, train_pyreader, loss, accuracy, graph_vars):


# 

reader = task_reader.ClassifyReader(
    vocab_path=args.vocab_path,
    label_map_config=args.label_map_config,
    max_seq_len=args.max_seq_len,
    do_lower_case=args.do_lower_case,
    in_tokens=args.in_tokens,
    random_seed=args.random_seed)

# exe.run(startup_prog)

train_data_generator = reader.data_generator(
    input_file=args.train_set,
    batch_size=args.batch_size,
    epoch=args.epoch,
    shuffle=True,
    phase="train")

# number of train_data

num_train_examples = reader.get_num_examples(args.train_set)
print("Num train examples: %d" % num_train_examples)

train_pyreader.decorate_tensor_provider(train_data_generator)
print("feed data")

place = fluid.CPUPlace()
exe = fluid.Executor(place)

exec_strategy = fluid.ExecutionStrategy()
build_strategy = fluid.BuildStrategy()

if os.getenv("NUM_THREADS", ""):
    exec_strategy.num_threads = int(os.getenv("NUM_THREADS"))

cpu_num = int(os.environ.get('PADDLE_TRAINER_COUNT', cpu_count()))
build_strategy.reduce_strategy = \
    fluid.BuildStrategy.ReduceStrategy.Reduce if cpu_num > 1 \
        else fluid.BuildStrategy.ReduceStrategy.AllReduce

pe = fluid.ParallelExecutor(
    use_cuda=False,
    loss_name=loss.name,
    main_program=train_program,
    build_strategy=build_strategy,
    exec_strategy=exec_strategy)

# exe.run(fluid.default_startup_program())

train_pyreader.start()
steps = 0

# if warmup_steps > 0:

# graph_vars["learning_rate"] = scheduled_lr

time_begin = time.time()
print("time_begin")
while True:
    try:
        steps += 1
        if steps % args.skip_steps != 0:
            loss_val, auc_val = pe.run(fetch_list=[loss.name,accuracy.name])
            loss_val = np.mean(loss_val)
            auc_val = np.mean(auc_val)

        else:
            outputs = evaluate(exe, train_program, train_pyreader,
                            graph_vars, "train")

            current_example, current_epoch = reader.get_train_progress()
            time_end = time.time()
            used_time = time_end - time_begin
            print("epoch: %d, progress: %d/%d, step: %d, ave loss: %f, "
                "ave acc: %f, speed: %f steps/s" %
                (current_epoch, current_example, num_train_examples,
                steps, outputs["loss"], outputs["accuracy"],
                args.skip_steps / used_time))
            time_begin = time.time()
    except fluid.core.EOFException:
        #save_path = os.path.join(args.checkpoints, "step_" + str(steps))
        #fluid.io.save_persistables(exe, save_path, train_program)
        train_pyreader.reset()
        break

#### loop end

def train():

args = parser.parse_args()

# ernie config,加载一些超参,建立模型

ernie_config = ErnieConfig(args.ernie_config_path)
ernie_config.print_config()
train_pyreader, graph_vars = create_model(
            args,
            pyreader_name='train_reader',
            ernie_config=ernie_config)
print("========create model")

auc_var = graph_vars["accuracy"]
loss = graph_vars["loss"]
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
print("========adam optimizer")
optimizer.minimize(loss)

port = os.getenv("PADDLE_PORT", "6174")
print("========PADDLE_PORT: " + port)

# pserver_endpoints = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")

# print("========PADDLE_PSERVERS_IP_PORT_LIST: " + pserver_endpoints)#难道是这里有问题?,难道是fluid版本?

pserver_ips = os.getenv("PADDLE_PSERVERS", "")
eplist = []
for ip in pserver_ips.split(","):
    eplist.append(':'.join([ip, port]))
args.endpoints = ",".join(eplist)
args.trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))

# trainers = int(os.getenv("PADDLE_TRAINERS_NUM"))

args.current_endpoint = os.getenv("POD_IP", "localhost") + ":" + port

# current_endpoint = os.getenv("POD_IP") + ":" + port

args.role = os.getenv("TRAINING_ROLE", "TRAINER")
args.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))

# trainer_id = int(os.getenv("PADDLE_TRAINER_ID"))

# training_role = os.getenv("TRAINING_ROLE")

t = fluid.DistributeTranspiler()
t.transpile(args.trainer_id, pservers=args.endpoints, trainers=args.trainers)
print("=========t.transpile")

if args.role == "PSERVER" or args.role == "pserver":
    pserver_prog = t.get_pserver_program(args.current_endpoint)
    pserver_startup = t.get_startup_program(args.current_endpoint,
                                            pserver_program=pserver_prog)

    exe = fluid.Executor(fluid.CPUPlace())
    exe.run(pserver_startup)
    print("pserver_startup")

    init_pretraining_params(
        exe,
        args.init_pretraining_params,
        main_program=pserver_prog,
        use_fp16=args.use_fp16)
    print("loaded pretrain model")

    exe.run(pserver_prog)

elif args.role == "TRAINER" or args.role == "trainer":
    train_prog = t.get_trainer_program()
    train_loop(args, train_prog, train_pyreader, loss, auc_var, graph_vars)

ifname== 'main':
train()

lstz6jyr

lstz6jyr2#

job-0bb5d071a13a2f60

Sun Jun 16 01:53:50 2019[1,0]:++ /home/disk1/normandy/maybach/app-user-20190616014145-19492/workspace/python27-gcc482/bin/python run_classifier.py
Sun Jun 16 01:54:13 2019[1,5]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:13 2019[1,2]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,3]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,7]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,9]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,4]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,0]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,1]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:14 2019[1,6]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.
Sun Jun 16 01:54:17 2019[1,8]:get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.

tpgth1q7

tpgth1q74#

把 use_double_buffer 设置成false试试,类似这里
https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/tests/demo/pyreader.py#L31

8yparm6h

8yparm6h5#

已经改为false,错误更新如下,谢大佬配合帮忙,改天请大佬喝下午茶。

jdgnovmf

jdgnovmf6#

经paddle同学帮忙,该问题为train_loop里面没有startup_program,而pyreader是需要startup的,为了兼顾模型参数加载不被初始化掉,trainer阶段startup后,加载模型。

相关问题