这段代码是这样构建的:我的机器人拍摄一张照片,一些TF计算机视觉模型计算出目标对象在照片中的开始位置。该信息(x1和x2坐标)被传递给pytorch模型。它应该学会预测正确的运动激活,以便更接近目标。执行移动后,机器人再次拍照,tf cv模型应计算电机激活是否使机器人更接近所需的状态(x1在10,x2坐标在31)
然而,每次我运行代码时,pytorch都不能计算渐变。
我想知道这是一个数据类型的问题,还是一个更一般的问题:如果损耗不是直接从pytorch网络的输出计算出来的,就不可能计算出梯度吗?
如有任何帮助和建议,将不胜感激。
# define policy model (model to learn a policy for my robot)
import torch
import torch.nn as nn
import torch.nn.functional as F
class policy_gradient_model(nn.Module):
def __init__(self):
super(policy_gradient_model, self).__init__()
self.fc0 = nn.Linear(2, 2)
self.fc1 = nn.Linear(2, 32)
self.fc2 = nn.Linear(32, 64)
self.fc3 = nn.Linear(64,32)
self.fc4 = nn.Linear(32,32)
self.fc5 = nn.Linear(32, 2)
def forward(self,x):
x = self.fc0(x)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = F.relu(self.fc4(x))
x = F.relu(self.fc5(x))
return x
policy_model = policy_gradient_model().double()
print(policy_model)
optimizer = torch.optim.AdamW(policy_model.parameters(), lr=0.005, betas=(0.9,0.999), eps=1e-08, weight_decay=0.01, amsgrad=False)
# make robot move as predicted by pytorch network (not all code included)
def move(motor_controls):
# define curvature
# motor_controls[0] = sigmoid(motor_controls[0])
activation_left = 1+(motor_controls[0])*99
activation_right = 1+(1- motor_controls[0])*99
print("activation left:", activation_left, ". activation right:",activation_right, ". time:", motor_controls[1]*100)
# start movement
# main
import cv2
import numpy as np
import time
from torch.autograd import Variable
print("start training")
losses=[]
losses_end_of_epoch=[]
number_of_steps_each_epoch=[]
loss_function = nn.MSELoss(reduction='mean')
# each epoch
for epoch in range(2):
count=0
target_reached=False
while target_reached==False:
print("epoch: ", epoch, ". step:", count)
### process and take picture
indices = process_picture()
### binary_network(sliced)=indices as input for policy model
optimizer.zero_grad()
### output: 1 for curvature, 1 for duration of movement
motor_controls = policy_model(Variable(torch.from_numpy(indices))).detach().numpy()
print("NO TANH output for motor: 1)activation left, 2)time ", motor_controls)
motor_controls[0] = np.tanh(motor_controls[0])
motor_controls[1] = np.tanh(motor_controls[1])
print("TANH output for motor: 1)activation left, 2)time ", motor_controls)
### execute suggested action
move(motor_controls)
### take and process picture2 (after movement)
indices = (process_picture())
### loss=(binary_network(picture2) - desired
print("calculate loss")
print("idx", indices, type(torch.tensor(indices)))
# loss = 0
# loss = (indices[0]-10)**2+(indices[1]-31)**2
# loss = loss/2
print("shape of indices", indices.shape)
array=np.zeros((1,2))
array[0]=indices
print(array.shape, type(array))
array2 = torch.ones([1,2])
loss = loss_function(torch.tensor(array).double(), torch.tensor([[10.0,31.0]]).double()).float()
print("loss: ", loss, type(loss), loss.shape)
# array2[0] = loss_function(torch.tensor(array).double(),
torch.tensor([[10.0,31.0]]).double()).float()
losses.append(loss)
# start line causing the error-message (still part of main)
### calculate gradients
loss.backward()
# end line causing the error-message (still part of main)
### apply gradients
optimizer.step()
# Output (so far as intented) (not all included)
# calculate loss
idx [14. 15.] <class 'torch.Tensor'>
shape of indices (2,)
(1, 2) <class 'numpy.ndarray'>
loss: tensor(136.) <class 'torch.Tensor'> torch.Size([])
# Error Message:
Traceback (most recent call last):
File "/home/pi/Desktop/GradientPolicyLearning/PolicyModel.py", line 259, in <module>
array2.backward()
File "/home/pi/.local/lib/python3.7/site-packages/torch/tensor.py", line 134, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/home/pi/.local/lib/python3.7/site-packages/torch/autograd/__init__.py", line 99, in
backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
6条答案
按热度按时间p4rjhz4m1#
如果对预测调用
.detach()
,则会删除渐变。由于您首先从模型中获取索引,然后尝试支持错误,因此我建议这将使预测与计算的梯度保持不变,这些梯度可以得到支持。
现在你可以做
注意,如果它抛出错误,你可能会调用双倍的预测。
x8diyxa72#
如果损耗不是直接从PyTorch网络的输出计算出来的,那么就不可能计算出梯度,因为这样你就不能应用链式规则来优化梯度。
lo8azlld3#
简单的解决方案是,打开将渐变计算设置为打开的上下文管理器,如果它是关闭的
wqlqzqxt4#
确保您在NN中的所有输入、NN的输出和基本真值/目标值都是torch.tensor类型,而不是list、numpy.array或任何其他可迭代类型。
另外,也要确保它们在任何时候都不会转换为list或numpy.array。
在我的例子中,我得到这个错误是因为我对包含来自NN的预测值的Tensor执行了列表理解。我这样做是为了获得每行中的最大值。然后,将列表转换回torch.tensor。在计算损失之前。
这种来回转换会禁用渐变计算
dfty9e195#
在我的例子中,我通过在定义输入Tensor时指定
requires_grad=True
来克服这个错误bfhwhh0e6#
以下内容对我很管用:
Loss.requires_grad=True
Loss.Backward()