Paddle chunk_eval中的num_chunk_types取不同的值,指标计算差异很大

uinbv5nw  于 2022-10-20  发布在  其他
关注(0)|答案(4)|浏览(135)
  • 标题:chunk_eval中的num_chunk_types取不同的值,训练loss差异不大,但是指标计算结果(F1、Precision、Recall)差异很大。
  • 版本、环境信息:

   1)PaddlePaddle版本:paddlepaddle-gpu-1.6.3.post107
   2)python2.7.13

  • 训练信息

   1)单机单卡 K40
 
chunk_eval 这个op中的num_chunk_types参数,这个取值要怎么设置啊,我的真实label是7个,当我把num_chunk_types设置成3、4、5的时候,计算出来的结果差异很多,按理来说输入为4和5时应该出错才对 。

label=7, num_chunk_types=3

label=7, num_chunk_types = 4

label=7, num_chunk_types = 5

t0ybt7op

t0ybt7op1#

` def forward(self, fields_dict, phase):
"""前向计算组网部分包括loss值的计算,必须由子类实现
:param: fields_dict: 序列化好的id
:param: phase: 当前调用的阶段,如训练、预测,不同的阶段组网可以不一样
:return: 一个dict数据,存放TARGET_FEED_NAMES, TARGET_PREDICTS, PREDICT_RESULT,LABEL,LOSS等所有你希望获取的数据
"""
instance_text_a = fields_dict["text_a"]
record_id_text_a = instance_text_a[InstanceName.RECORD_ID]
text_a_src = record_id_text_a[InstanceName.SRC_IDS]
text_a_pos = record_id_text_a[InstanceName.POS_IDS]
text_a_sent = record_id_text_a[InstanceName.SENTENCE_IDS]
text_a_mask = record_id_text_a[InstanceName.MASK_IDS]
text_a_task = record_id_text_a[InstanceName.TASK_IDS]
text_a_lens = record_id_text_a[InstanceName.SEQ_LENS]

instance_label = fields_dict["label"]
    record_id_label = instance_label[InstanceName.RECORD_ID]
    label = record_id_label[InstanceName.SRC_IDS]
    label_lens = record_id_label[InstanceName.SEQ_LENS]
    unpad_labels = fluid.layers.sequence_unpad(label, length=label_lens)

    emb_dict = self.make_embedding(fields_dict, phase)
    emb_text_a = emb_dict["text_a"]
    unpad_emb = fluid.layers.sequence_unpad(emb_text_a, length=text_a_lens)

    num_labels = 7

    # demo config
    grnn_hidden_dim = 128  # 768
    crf_lr = 0.2
    bigru_num = 2
    init_bound = 0.1

    def _bigru_layer(input_feature):
        """define the bidirectional gru layer
        """
        pre_gru = fluid.layers.fc(
            input=input_feature,
            size=grnn_hidden_dim * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru = fluid.layers.dynamic_gru(
            input=pre_gru,
            size=grnn_hidden_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        pre_gru_r = fluid.layers.fc(
            input=input_feature,
            size=grnn_hidden_dim * 3,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))
        gru_r = fluid.layers.dynamic_gru(
            input=pre_gru_r,
            size=grnn_hidden_dim,
            is_reverse=True,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=-init_bound, high=init_bound),
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)))

        bi_merge = fluid.layers.concat(input=[gru, gru_r], axis=1)
        return bi_merge

    input_feature = unpad_emb
    for i in range(bigru_num):
        bigru_output = _bigru_layer(input_feature)
        input_feature = bigru_output

    emission = fluid.layers.fc(
        size=num_labels,
        input=bigru_output,
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Uniform(
                low=-init_bound, high=init_bound),
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=1e-4)))

    crf_cost = fluid.layers.linear_chain_crf(
        input=emission,
        label=unpad_labels,
        param_attr=fluid.ParamAttr(
            name='crfw',
            learning_rate=crf_lr))

    prediction = fluid.layers.crf_decoding(
        input=emission, param_attr=fluid.ParamAttr(name='crfw'))

    run_value = fluid.layers.chunk_eval(input=prediction, label=unpad_labels, chunk_scheme="IOB",
                                        num_chunk_types=int(math.ceil((num_labels - 1) / 2.0)))
    precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = run_value

    if phase == InstanceName.SAVE_INFERENCE:
        target_predict_list = [prediction]
        target_feed_name_list = [text_a_src.name, text_a_pos.name, text_a_sent.name,
                                 text_a_mask.name, text_a_lens.name]
        emb_params = self.model_params.get("embedding")
        ernie_config = ErnieConfig(emb_params.get("config_path"))
        if ernie_config.get('use_task_id', False):
            target_feed_name_list.append(text_a_task.name)

        forward_return_dict = {
            InstanceName.TARGET_FEED_NAMES: target_feed_name_list,
            InstanceName.TARGET_PREDICTS: target_predict_list
        }
        return forward_return_dict

    avg_cost = fluid.layers.mean(x=crf_cost)

    forward_return_dict = {
        # InstanceName.PREDICT_RESULT: prediction,
        # InstanceName.LABEL: label,
        "num_infer_chunks": num_infer_chunks,
        "num_label_chunks": num_label_chunks,
        "num_correct_chunks": num_correct_chunks,
        InstanceName.LOSS: avg_cost
    }
    return forward_return_dict

`

0x6upsns

0x6upsns2#

补充一下组网代码。chunk_eval应该只是指标计算,并不会影响反向传播吧?

mf98qq94

mf98qq943#

chunk_eval应该只是指标计算,并不会影响反向传播吧?

是的,不会影响反向传播

chunk_eval 这个op中的num_chunk_types参数,这个取值要怎么设置啊,我的真实label是7个,当我把num_chunk_types设置成3、4、5的时候,计算出来的结果差异很多,按理来说输入为4和5时应该出错才对 。

使用IOB真实label是7个的话,num_chunk_types的正确设置应该3,输入为4和5时目前不会报错。请问7个label分别是什么呢
另外可否对num_chunk_types=3时指标不符合预期的case,在layers.chunk_eval前使用 layers.Print 使用出下贴出来,我们这边复现下

b4lqfgs4

b4lqfgs44#

嗯嗯,有的,方便的话你可以登我的机器看看,复现环境是好的。

相关问题