我试着在我的笔记本电脑上运行Pytorch。这是一个旧型号,但它确实有一个Nvidia显卡。我意识到它可能不足以实现真正的机器学习,但我试着这样做,这样我就可以学习安装CUDA的过程。
我已经按照Ubuntu 18.04的installation guide的步骤操作了(我的特定发行版是Xubuntu)。
我的显卡是GeForce 845 M,已通过lspci | grep nvidia
验证:
01:00.0 3D controller: NVIDIA Corporation GM107M [GeForce 845M] (rev a2)
01:00.1 Audio device: NVIDIA Corporation Device 0fbc (rev a1)
我还安装了gcc 7.5,由gcc --version
验证
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
我已经安装了正确的头文件,通过尝试使用sudo apt-get install linux-headers-$(uname -r)
安装它们来验证:
Reading package lists... Done
Building dependency tree
Reading state information... Done
linux-headers-4.15.0-106-generic is already the newest version (4.15.0-106.107).
然后,我按照安装说明使用本地的.deb版本10.1。
Npw,当我运行nvidia-smi
时,我得到:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.00 Driver Version: 418.87.00 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce 845M On | 00000000:01:00.0 Off | N/A |
| N/A 40C P0 N/A / N/A | 88MiB / 2004MiB | 1% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 982 G /usr/lib/xorg/Xorg 87MiB |
+-----------------------------------------------------------------------------+
然后运行nvcc -V
,得到:
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2019 NVIDIA Corporation
Built on Sun_Jul_28_19:07:16_PDT_2019
Cuda compilation tools, release 10.1, V10.1.243
然后,我执行了6.1节中的安装后说明,因此,echo $PATH
看起来如下:
/home/isaek/anaconda3/envs/stylegan2_pytorch/bin:/home/isaek/anaconda3/bin:/home/isaek/anaconda3/condabin:/usr/local/cuda-10.1/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
echo $LD_LIBRARY_PATH
看起来像这样:
/usr/local/cuda-10.1/lib64
我的/etc/udev/rules.d/40-vm-hotadd.rules
文件看起来像这样:
# On Hyper-V and Xen Virtual Machines we want to add memory and cpus as soon as they appear
ATTR{[dmi/id]sys_vendor}=="Microsoft Corporation", ATTR{[dmi/id]product_name}=="Virtual Machine", GOTO="vm_hotadd_apply"
ATTR{[dmi/id]sys_vendor}=="Xen", GOTO="vm_hotadd_apply"
GOTO="vm_hotadd_end"
LABEL="vm_hotadd_apply"
# Memory hotadd request
# CPU hotadd request
SUBSYSTEM=="cpu", ACTION=="add", DEVPATH=="/devices/system/cpu/cpu[0-9]*", TEST=="online", ATTR{online}="1"
LABEL="vm_hotadd_end"
完成所有这些之后,我甚至编译并运行了这些示例。./deviceQuery
返回:
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce 845M"
CUDA Driver Version / Runtime Version 10.1 / 10.1
CUDA Capability Major/Minor version number: 5.0
Total amount of global memory: 2004 MBytes (2101870592 bytes)
( 4) Multiprocessors, (128) CUDA Cores/MP: 512 CUDA Cores
GPU Max Clock rate: 863 MHz (0.86 GHz)
Memory Clock rate: 1001 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 1048576 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.1, NumDevs = 1
Result = PASS
并且./bandwidthTest
返回:
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: GeForce 845M
Quick Mode
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 11.7
Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 11.8
Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 14.5
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
但在所有这些之后,这个Python代码片段(在安装了所有依赖项的conda环境中):
import torch
torch.cuda.is_available()
返回False
有没有人知道如何解决这个问题?我试着把/usr/local/cuda-10.1/bin
加到etc/environment
上,如下所示:
PATH="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games"
PATH=$PATH:/usr/local/cuda-10.1/bin
重启了终端,但还是没修好。我真的不知道还能尝试什么。
EDIT -@kHarshit的collect_env结果
Collecting environment information...
PyTorch version: 1.5.0
Is debug build: No
CUDA used to build PyTorch: 10.2
OS: Ubuntu 18.04.4 LTS
GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
CMake version: Could not collect
Python version: 3.6
Is CUDA available: No
CUDA runtime version: 10.1.243
GPU models and configuration: GPU 0: GeForce 845M
Nvidia driver version: 418.87.00
cuDNN version: Could not collect
Versions of relevant libraries:
[pip] numpy==1.18.5
[pip] pytorch-ranger==0.1.1
[pip] stylegan2-pytorch==0.12.0
[pip] torch==1.5.0
[pip] torch-optimizer==0.0.1a12
[pip] torchvision==0.6.0
[pip] vector-quantize-pytorch==0.0.2
[conda] numpy 1.18.5 pypi_0 pypi
[conda] pytorch-ranger 0.1.1 pypi_0 pypi
[conda] stylegan2-pytorch 0.12.0 pypi_0 pypi
[conda] torch 1.5.0 pypi_0 pypi
[conda] torch-optimizer 0.0.1a12 pypi_0 pypi
[conda] torchvision 0.6.0 pypi_0 pypi
[conda] vector-quantize-pytorch 0.0.2 pypi_0 pypi
6条答案
按热度按时间wgx48brx1#
PyTorch不使用系统的CUDA库。当你使用
pip
或conda
预编译的二进制文件安装PyTorch时,它会附带一个本地安装的CUDA库的指定版本的副本。事实上,你甚至不需要在系统上安装CUDA就可以使用支持CUDA的PyTorch。有两种情况可能导致您的问题。
1.您安装了PyTorch的纯CPU版本。在这种情况下,PyTorch编译时不支持CUDA,因此它不支持CUDA。
1.您安装了PyTorch的CUDA 10.2版本。在这种情况下,问题在于您的显卡当前使用的是418.87驱动程序,而该驱动程序最高只支持CUDA 10.1。在这种情况下,有两种可能的修复方法:安装更新的驱动程序(版本〉= 440.33,根据Table 2)或安装针对CUDA 10.1编译的PyTorch版本。
要确定安装PyTorch时使用的合适命令,您可以使用pytorch.org“安装PyTorch”一节中的小部件。只需选择合适的操作系统、软件包管理器和CUDA版本,然后运行推荐的命令。
在您的案例中,一个解决方案是使用
它显式地向conda指定您要安装针对CUDA10.1编译的PyTorch版本。
有关PyTorch CUDA与相关驱动程序和硬件兼容性的更多信息,请参见this answer。
编辑在您添加
collect_env
的输出后,我们可以看到问题是您安装了PyTorch的CUDA 10.2版本。基于此,另一个解决方案是更新显卡驱动程序,如第2项和链接的答案所述。ahy6op9u2#
TL; DR
1.安装由Canonical或NVIDIA第三方PPA提供的NVIDIA工具包。
1.重新启动工作站。
1.创建干净的Python虚拟环境(或重新安装所有CUDA相关软件包)。
描述
首先安装Canonical提供的NVIDIA CUDA Toolkit:
或遵循NVIDIA developers instructions:
然后重新启动操作系统使用NVIDIA驱动程序加载内核
使用您喜爱的管理器(
conda
、venv
等)创建环境或**将
pytorch
和torchvision
**重新安装到现有的服务器中:否则可能无法正确检测到NVIDIA CUDA C/C++绑定。
最后,确保正确检测到CUDA:
个版本
20.04.x
22.04
(之前的正式版本)yshpjwxd3#
在我的例子中,重新启动我的机器使GPU再次激活。我得到的最初消息是GPU当前正被另一个应用程序使用。但当我查看
nvidia-smi
时,我什么也没看到。所以,依赖关系没有改变,它只是再次开始工作。tzdcorbm4#
另一种可能的情况是在安装PyTorch之前没有正确设置环境变量
CUDA_VISIBLE_DEVICES
。kokeuurv5#
如果您的CUDA版本与PyTorch预期的版本不匹配,您将看到此问题。
在Arch / Manjaro上:
sudo pacman -U --noconfirm cuda-11.6.2-1-x86_64.pkg.tar.zst
安装CUDA不要更新到比PyTorch预期的更高的CUDA版本。如果PyTorch想要11.6,而您已经更新到11.7,您将收到错误消息。
yshpjwxd6#
在我的情况下,它的工作如下:
删除CUDA驱动程序
然后,根据您的发行版和系统,从以下链接获取驱动程序的确切安装脚本:https://developer.nvidia.com/cuda-downloads?target_os=Linux
在我的情况下,它是x64上的dabian,所以我做了:
而现在
nvidia-smi
正如预期的那样工作!我希望这对你有帮助