scipy 在python中拟合负二项式

guicsvcw  于 2022-11-09  发布在  Python
关注(0)|答案(4)|浏览(320)

在scipy中,没有支持使用数据拟合负二项分布(可能是由于scipy中的负二项分布只是离散的)。
对于正态分布,我只需要:

from scipy.stats import norm
param = norm.fit(samp)

在任何其他库中是否有类似的“准备使用”功能?

kninwzqo

kninwzqo1#

Statsmodels has discrete.discrete_model.NegativeBinomial.fit(), see here: https://www.statsmodels.org/dev/generated/statsmodels.discrete.discrete_model.NegativeBinomial.fit.html#statsmodels.discrete.discrete_model.NegativeBinomial.fit

5t7ly7z5

5t7ly7z52#

这不仅是因为它是离散的,还因为负二项分布的最大似然拟合非常复杂,特别是在有附加位置参数的情况下。这就是为什么.fit()方法不适用于它(以及Scipy中的其他离散分布)的原因,下面是一个例子:

In [163]:

import scipy.stats as ss
import scipy.optimize as so
In [164]:

# define a likelihood function

def likelihood_f(P, x, neg=1):
    n=np.round(P[0]) #by definition, it should be an integer 
    p=P[1]
    loc=np.round(P[2])
    return neg*(np.log(ss.nbinom.pmf(x, n, p, loc))).sum()
In [165]:

# generate a random variable

X=ss.nbinom.rvs(n=100, p=0.4, loc=0, size=1000)
In [166]:

# The likelihood

likelihood_f([100,0.4,0], X)
Out[166]:
-4400.3696690513316
In [167]:

# A simple fit, the fit is not good and the parameter estimate is way off

result=so.fmin(likelihood_f, [50, 1, 1], args=(X,-1), full_output=True, disp=False)
P1=result[0]
(result[1], result[0])
Out[167]:
(4418.599495886474, array([ 59.61196161,   0.28650831,   1.15141838]))
In [168]:

# Try a different set of start paramters, the fit is still not good and the parameter estimate is still way off

result=so.fmin(likelihood_f, [50, 0.5, 0], args=(X,-1), full_output=True, disp=False)
P1=result[0]
(result[1], result[0])
Out[168]:
(4417.1495981801972,
 array([  6.24809397e+01,   2.91877405e-01,   6.63343536e-04]))
In [169]:

# In this case we need a loop to get it right

result=[]
for i in range(40, 120): #in fact (80, 120) should probably be enough
    _=so.fmin(likelihood_f, [i, 0.5, 0], args=(X,-1), full_output=True, disp=False)
    result.append((_[1], _[0]))
In [170]:

# get the MLE

P2=sorted(result, key=lambda x: x[0])[0][1]
sorted(result, key=lambda x: x[0])[0]
Out[170]:
(4399.780263084549,
 array([  9.37289361e+01,   3.84587087e-01,   3.36856705e-04]))
In [171]:

# Which one is visually better?

plt.hist(X, bins=20, normed=True)
plt.plot(range(260), ss.nbinom.pmf(range(260), np.round(P1[0]), P1[1], np.round(P1[2])), 'g-')
plt.plot(range(260), ss.nbinom.pmf(range(260), np.round(P2[0]), P2[1], np.round(P2[2])), 'r-')
Out[171]:
[<matplotlib.lines.Line2D at 0x109776c10>]

m1m5dgzv

m1m5dgzv3#

我知道这个线程是相当古老的,但目前的读者可能想看看这个回购协议,这是为此目的:https://github.com/gokceneraslan/fit_nbinom
这里还有一个实现,虽然是一个更大的包的一部分:https://github.com/ernstlab/ChromTime/blob/master/optimize.py

zhte4eai

zhte4eai4#

我偶然发现了这条线索,并为其他任何想知道的人找到了答案。
如果您只需要scipy.stats.nbinom使用的n,p参数化,则可以转换均值和方差估计值:

mu = np.mean(sample)
sigma_sqr = np.var(sample)

n = mu**2 / (sigma_sqr - mu)
p = mu / sigma_sqr

如果您需要离散参数,您可以使用statsmodels的负二项回归模型,其中只有一个交互作用项。这将使用MLE找到离散参数alpha


# Data processing

import pandas as pd
import numpy as np

# Analysis models

import statsmodels.formula.api as smf
from scipy.stats import nbinom

def convert_params(mu, alpha):
    """
    Convert mean/dispersion parameterization of a negative binomial to the ones scipy supports

    Parameters
    ----------
    mu : float
       Mean of NB distribution.
    alpha : float
       Overdispersion parameter used for variance calculation.

    See https://en.wikipedia.org/wiki/Negative_binomial_distribution#Alternative_formulations
    """
    var = mu + alpha * mu**2
    p = mu / var
    r = mu**2 / (var - mu)
    return r, p

# Generate sample data

n = 2
p = 0.9
sample = nbinom.rvs(n=n, p=p, size=10000)

# Estimate parameters

## Mean estimates expectation parameter for negative binomial distribution

mu = np.mean(sample) 

## Dispersion parameter from nb model with only interaction term

nbfit = smf.negativebinomial("nbdata ~ 1", data=pd.DataFrame({"nbdata": sample})).fit()

alpha = nbfit.params[1]  # Dispersion parameter

# Convert parameters to n, p parameterization

n_est, p_est = convert_params(mu, alpha)

# Check that estimates are close to the true values:

print("""
                   {:<3}   {:<3}
True parameters:  {:<3}   {:<3}
Estimates      :  {:<3}   {:<3}""".format('n', 'p', n, p,
                                  np.round(n_est, 2), np.round(p_est, 2)))

相关问题