如何在NumPy中从多幅图像中生成每个像素的直方图?

z0qdvdin  于 2022-11-10  发布在  其他
关注(0)|答案(1)|浏览(132)

我有数以万计的图片。我想为每个像素生成一个直方图。我使用NumPy编写了以下代码来执行此操作:

import numpy as np
import matplotlib.pyplot as plt

nimages = 1000
im_shape = (64,64)
nbins = 100

# predefine the histogram bins

hist_bins = np.linspace(0,1,nbins)

# create an array to store histograms for each pixel

perpix_hist = np.zeros((64,64,nbins))

for ni in range(nimages):
    #create a simple image with normally distributed pixel values
    im = np.random.normal(loc=0.5,scale=0.05,size=im_shape)

    #sort each pixel into the predefined histogram
    bins_for_this_image = np.searchsorted(hist_bins, im.ravel())
    bins_for_this_image = bins_for_this_image.reshape(im_shape)

    #this next part adds one to each of those bins
    #but this is slow as it loops through each pixel
    #how to vectorize?
    for i in range(im_shape[0]):
        for j in range(im_shape[1]):
            perpix_hist[i,j,bins_for_this_image[i,j]] += 1

# plot histogram for a single pixel

plt.plot(hist_bins,perpix_hist[0,0])
plt.xlabel('pixel values')
plt.ylabel('counts')
plt.title('histogram for a single pixel')
plt.show()

我想知道有没有人能帮我把for循环矢量化?我想不出如何正确地索引perpix_hist数组。我有数以万计的图像,每张图像都是1500x1500像素,这太慢了。

pgccezyw

pgccezyw1#

您可以使用np.meshgrid将其矢量化,并提供第一、第二和第三维(您已经拥有的最后一维)的索引。

y_grid, x_grid = np.meshgrid(np.arange(64), np.arange(64))

for i in range(nimages):
    #create a simple image with normally distributed pixel values
    im = np.random.normal(loc=0.5,scale=0.05,size=im_shape)

    #sort each pixel into the predefined histogram
    bins_for_this_image = np.searchsorted(hist_bins, im.ravel())
    bins_for_this_image = bins_for_this_image.reshape(im_shape)

    perpix_hist[x_grid, y_grid, bins_for_this_image] += 1

相关问题