我正在尝试定义一个模型happyModel()
# GRADED FUNCTION: happyModel
def happyModel():
"""
Implements the forward propagation for the binary classification model:
ZEROPAD2D -> CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> FLATTEN -> DENSE
Note that for simplicity and grading purposes, you'll hard-code all the values
such as the stride and kernel (filter) sizes.
Normally, functions should take these values as function parameters.
Arguments:
None
Returns:
model -- TF Keras model (object containing the information for the entire training process)
"""
model = tf.keras.Sequential(
[
## ZeroPadding2D with padding 3, input shape of 64 x 64 x 3
tf.keras.layers.ZeroPadding2D(padding=(3,3), data_format=(64,64,3)),
## Conv2D with 32 7x7 filters and stride of 1
tf.keras.layers.Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0'),
## BatchNormalization for axis 3
tf.keras.layers.BatchNormalization(axis = 3, name = 'bn0'),
## ReLU
tf.keras.layers.Activation('relu'),
## Max Pooling 2D with default parameters
tf.keras.layers.MaxPooling2D((2, 2), name='max_pool0'),
## Flatten layer
tf.keras.layers.Flatten(),
## Dense layer with 1 unit for output & 'sigmoid' activation
tf.keras.layers.Dense(1, activation='sigmoid', name='fc'),
# YOUR CODE STARTS HERE
# YOUR CODE ENDS HERE
]
)
return model
下面的代码用于创建上面定义的该模型的对象:
happy_model = happyModel()
# Print a summary for each layer
for layer in summary(happy_model):
print(layer)
output = [['ZeroPadding2D', (None, 70, 70, 3), 0, ((3, 3), (3, 3))],
['Conv2D', (None, 64, 64, 32), 4736, 'valid', 'linear', 'GlorotUniform'],
['BatchNormalization', (None, 64, 64, 32), 128],
['ReLU', (None, 64, 64, 32), 0],
['MaxPooling2D', (None, 32, 32, 32), 0, (2, 2), (2, 2), 'valid'],
['Flatten', (None, 32768), 0],
['Dense', (None, 1), 32769, 'sigmoid']]
comparator(summary(happy_model), output)
出现以下错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-67-f33284fd82fe> in <module>
1 happy_model = happyModel()
2 # Print a summary for each layer
----> 3 for layer in summary(happy_model):
4 print(layer)
5
~/work/release/W1A2/test_utils.py in summary(model)
30 result = []
31 for layer in model.layers:
---> 32 descriptors = [layer.__class__.__name__, layer.output_shape, layer.count_params()]
33 if (type(layer) == Conv2D):
34 descriptors.append(layer.padding)
/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py in output_shape(self)
2177 """
2178 if not self._inbound_nodes:
-> 2179 raise AttributeError('The layer has never been called '
2180 'and thus has no defined output shape.')
2181 all_output_shapes = set(
AttributeError: The layer has never been called and thus has no defined output shape.
我怀疑我对ZeroPadding2D()
的调用不正确。该项目似乎要求ZeroPadding2D()
的输入形状为64X64X3。我尝试了许多格式,但无法修复这个问题。有人能给予一个指针吗?非常感谢。
4条答案
按热度按时间q8l4jmvw1#
在您的模型定义中,以下图层存在问题:
首先,你还没有定义任何输入层,其中
data_format
是一个字符串,channels_last
(缺省值)或channels_first
之一,source.定义上述模型的正确方法如下:tzxcd3kk2#
根据tf.keras.Sequential()(https://www.tensorflow.org/api_docs/python/tf/keras/Sequential)的文档:
或者,第一层可以接收
input_shape
参数因此,如果要指定输入形状,则应使用
tf.keras.layers.ZeroPadding2D(padding=(3,3), input_shape=(64,64,3))
,而不是tf.keras.layers.ZeroPadding2D(padding=(3,3), data_format=(64,64,3))
pftdvrlh3#
试试看它能不能正常工作......
d4so4syb4#
你可以试试看。