我想让一个人工智能玩我的自定义环境,不幸的是,当我运行我的代码,以下错误累积:
File "C:\Program Files\JetBrains\PyCharm Community Edition 2021.2\plugins\python-ce\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile
pydev_imports.execfile(filename, global_vars, local_vars) # execute the script
File "C:\Program Files\JetBrains\PyCharm Community Edition 2021.2\plugins\python-ce\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "D:/PycharmProjects/Custom Enviroment AI/Enviroment.py", line 88, in <module>
DQN = buildAgent(model, actions)
File "D:/PycharmProjects/Custom Enviroment AI/Enviroment.py", line 82, in buildAgent
dqn = DQNAgent(model, memory=memory, policy=policy, nb_actions=actions, nb_steps_warmup=10,
File "D:\PycharmProjects\Custom Enviroment AI\venv\lib\site-packages\rl\agents\dqn.py", line 108, in __init__
if hasattr(model.output, '__len__') and len(model.output) > 1:
File "D:\PycharmProjects\Custom Enviroment AI\venv\lib\site-packages\keras\engine\keras_tensor.py", line 221, in __len__
raise TypeError('Keras symbolic inputs/outputs do not '
TypeError: Keras symbolic inputs/outputs do not implement `__len__`. You may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model. This error will also get raised if you try asserting a symbolic input/output directly.
这个错误说你不能使用len()而应该使用.shape isead,不幸的是这似乎是tensorflow内部的一个错误我的完整代码是:
from rl.memory import SequentialMemory
from rl.policy import BoltzmannQPolicy
from rl.agents.dqn import DQNAgent
from keras.layers import Dense
import tensorflow as tf
import numpy as np
import random
import pygame
import gym
class Env(gym.Env):
def __init__(self):
self.action_space = gym.spaces.Discrete(4)
self.observation_space = gym.spaces.MultiDiscrete([39, 27])
self.screen = pygame.display.set_mode((800, 600))
self.PlayerX = 0
self.PlayerY = 0
self.FoodX = 0
self.FoodY = 0
self.state = [self.FoodX - self.PlayerX + 19, self.FoodY - self.PlayerY + 14]
self.timeLimit = 1000
def render(self, mode="human"):
self.screen.fill((0, 0, 0))
pygame.draw.rect(self.screen, (255, 255, 255), pygame.Rect(self.PlayerX * 40, self.PlayerY * 40, 40, 40))
pygame.draw.rect(self.screen, (255, 0, 0), pygame.Rect(self.FoodX * 40, self.FoodY * 40, 40, 40))
pygame.display.update()
def reset(self):
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
self.PlayerX = 0
self.PlayerY = 0
self.timeLimit = 1000
return self.state
def step(self, action):
self.timeLimit -= 1
reward = -1
if action == 0 and self.PlayerY > 0:
self.PlayerY -= 1
if action == 1 and self.PlayerX > 0:
self.PlayerX -= 1
if action == 2 and self.PlayerY < 14:
self.PlayerY += 1
if action == 3 and self.PlayerX < 19:
self.PlayerX += 1
if self.PlayerX == self.FoodX and self.PlayerY == self.FoodY:
reward += 30
self.FoodX = random.randint(1, 19)
self.FoodY = random.randint(1, 14)
if self.timeLimit <= 0:
done = True
else:
done = False
self.state = [self.FoodX - self.PlayerX, self.FoodY - self.PlayerY]
return self.state, reward, done
env = Env()
states = env.observation_space.shape
actions = env.action_space.n
def build_model(states, actions):
model = tf.keras.Sequential()
model.add(Dense(2, activation='relu', input_shape=states))
model.add(Dense(4, activation='relu'))
model.add(Dense(actions, activation='linear'))
return model
def buildAgent(model, actions):
policy = BoltzmannQPolicy()
memory = SequentialMemory(limit=50000, window_length=1)
dqn = DQNAgent(model, memory=memory, policy=policy, nb_actions=actions, nb_steps_warmup=10,
target_model_update=1e-2)
return dqn
model = build_model(states, actions)
DQN = buildAgent(model, actions)
DQN.compile(tf.keras.optimizers.Adam(learning_rate=1e-3), metrics=['mae'])
DQN.fit(env, nb_steps=50000, visualize=False, verbose=1)
scores = DQN.test(env, nb_episodes=100, visualize=True)
print(np.mean(scores.history['episode_reward']))
pygame.quit()
model.save('model.h5')
我使用Tensorflow:2.8.0。这似乎是Tensorflow代码中的错误,但我不知道该怎么办
2条答案
按热度按时间efzxgjgh1#
如here所述,您需要安装
keras-rl
的更新版本:您还需要向输入形状添加一个额外的维度,并在最后添加一个
Flatten
层,因为Keras
在使用DQN
代理时需要这样做:最后,自定义环境中的
step
方法还必须返回一个info
字典(我刚刚创建了一个空字典):如果您进行了这些更改,它应该可以正常工作。
如需详细信息,请参阅docs。
ylamdve62#
尝试安装keras-rl 2 1.0.4版。