我在乘(x1,Wo 1)时遇到形状错误。但我找不到原因。错误:值错误:形状等级必须相等,但必须是0和2
将形状0与其他形状合并。对于“add_2/x”(操作:“ Package ”)与输入形状:[]、[20,1]中的一个。
import tensorflow as tf
import numpy as np
import pandas as pd
import math
df1=pd.read_csv(r'C:\Ocean of knowledge\Acads\7th sem\UGP\datasets\xTrain.csv')
df1 = df1.dropna()
xTrain = df1.values
df2 = pd.read_csv(r'C:\Ocean of knowledge\Acads\7th sem\UGP\datasets\yTrain.csv')
df2 = df2.dropna()
yTrain = df2.values
sess=tf.Session()
saver = tf.train.import_meta_graph(r'C:\Ocean of knowledge\Acads\7th sem\UGP\NeuralNet\my_model.meta')
saver.restore(sess,tf.train.latest_checkpoint('./'))
graph = tf.get_default_graph()
w1 = graph.get_tensor_by_name("input:0")
feed_dict ={w1:xTrain1}
op_to_restore = graph.get_tensor_by_name("hidden:0")
h1 = sess.run(op_to_restore,feed_dict)
print(h1)
n_input1 = 20
n_hidden1 = 1
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
x1 = tf.placeholder(tf.float32, shape=[])
Wo1 = weight_variable([20,1])
bo1 = bias_variable([1])
y1 = tf.nn.tanh(tf.matmul((x1,Wo1)+ bo1),name="op_to_restore2_")
y1_ = tf.placeholder("float", [None,n_hidden1], name="check_")
meansq1 = tf.reduce_mean(tf.square(y1- y1_), name="hello_")
train_step1 = tf.train.AdamOptimizer(0.005).minimize(meansq1)
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
sess.run(init)
n_rounds1 = 100
batch_size1 = 5
n_samp1 = 350
for i in range(n_rounds1+1):
sample1 = np.random.randint(n_samp1, size=batch_size1)
batch_xs1 = h1[sample1][:]
batch_ys1 = yTrain[sample1][:]
sess.run(x1, feed_dict={x1: batch_xs1, y1_:batch_ys1})
1条答案
按热度按时间t9aqgxwy1#
这里的
tf.matmul((x1,Wo1)+ bo1
是tf.matmul(a,b)
,这是矩阵乘法运算,这个运算要求a
和b
都是矩阵(Tensor的秩〉=2)。在你的例子中,你要乘以
x1
,定义如下Wo1
的定义如下正如你所看到的,
x1
不是一个矩阵,而是一个标量(一个形状为[]
的Tensor)。也许你在寻找一个元素的乘法?这就是
tf.multiply
的作用。