我目前有两个numpy数组:
X
-(157,128)- 157组要素,每组128个要素Y
-(157)-特性集的分类
这是我编写的代码,试图构建这些特征的线性分类模型。
首先,我将数组调整为Tensorflow数据集:
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": X},
y=Y,
num_epochs=None,
shuffle=True)
然后我尝试fit
一个SVM模型:
svm = tf.contrib.learn.SVM(
example_id_column='example_id', # not sure why this is necessary
feature_columns=tf.contrib.learn.infer_real_valued_columns_from_input(X), # create feature columns (not sure why this is necessary)
l2_regularization=0.1)
svm.fit(input_fn=train_input_fn, steps=10)
但这只是返回错误:
WARNING:tensorflow:float64 is not supported by many models, consider casting to float32.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpf1mwlR
WARNING:tensorflow:tf.variable_op_scope(values, name, default_name) is deprecated, use tf.variable_scope(name, default_name, values)
Traceback (most recent call last):
File "/var/www/idmy.team/python/train/classifier.py", line 59, in <module>
svm.fit(input_fn=train_input_fn, steps=10)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/util/deprecation.py", line 316, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 480, in fit
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 985, in _train_model
model_fn_ops = self._get_train_ops(features, labels)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 1201, in _get_train_ops
return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 1165, in _call_model_fn
model_fn_results = self._model_fn(features, labels, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/learn/python/learn/estimators/linear.py", line 244, in sdca_model_fn
features.update(layers.transform_features(features, feature_columns))
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/layers/python/layers/feature_column_ops.py", line 656, in transform_features
transformer.transform(column)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/layers/python/layers/feature_column_ops.py", line 847, in transform
feature_column.insert_transformed_feature(self._columns_to_tensors)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/contrib/layers/python/layers/feature_column.py", line 1816, in insert_transformed_feature
input_tensor = self._normalized_input_tensor(columns_to_tensors[self.name])
KeyError: ''
我做错了什么?
2条答案
按热度按时间svdrlsy41#
下面是一个不会引发错误的SVM使用示例:
传递给SVM估计器need string IDs的示例。您可能可以用
infer_real_valued_columns_from_input
来替换,但您需要传递一个字典,以便它为该列选择正确的名称。在这种情况下,从概念上讲,自己构造特征列更简单。wfsdck302#
self.name
是空字符串,并且该空字符串不存在于您要传递给创建_RealValuedColumn
对象的infer_real_valued_columns_from_input
的字典中tf.contrib.learn.infer_real_valued_columns_from_input(X)
必须是一个字典,因此_RealValuedColumn
对象的self.name
由您传递的字典的键初始化TypeError: Input 'input' of 'SdcaFprint' Op has type int64 that does not match expected type of string.