我正在使用带有Keras后端的U-Net处理一个多标签分割问题。对于每个输入图像,我有两个掩码,属于两个不同的对象。图像和掩码的大小为224 x 224,分别为RGB和灰度。文件夹结构如下:
data
|_train
|_image
|_label1 (binary masks of object 1)
|_label2 (binary masks of object 2)
我使用的是Qubvel细分模型https://github.com/qubvel/segmentation_models和vgg-16 Backbone.js 。下面显示的是我的培训管道:
img_width, img_height = 224,224
input_shape = (img_width, img_height, 3)
model_input = Input(shape=input_shape)
n_classes=2 # masks of object 1 and object 2
activation='sigmoid' #since I want multi-label output and not multi-class
batch_size = 16
n_epochs = 128
BACKBONE = 'vgg16'
model1 = sm.Unet(BACKBONE,
encoder_weights='imagenet',
classes=n_classes,
activation=activation)
opt = keras.optimizers.Adam(lr=0.001)
loss_func='binary_crossentropy'
model1.compile(optimizer=opt,
loss=loss_func,
metrics=['binary_accuracy'])
callbacks = [ModelCheckpoint(monitor='val_loss',
filepath='model1.hdf5',
save_best_only=True,
save_weights_only=True,
mode='min',
verbose = 1)]
history1 = model1.fit(X_tr, Y_tr,
batch_size=batch_size,
epochs=n_epochs,
callbacks=callbacks,
validation_data=(X_val, Y_val))
模型各层形状如下:
[(None, None, None, 3)]
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 512)
(None, None, None, 1024)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 256)
(None, None, None, 768)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 128)
(None, None, None, 384)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 64)
(None, None, None, 192)
(None, None, None, 32)
(None, None, None, 32)
(None, None, None, 32)
(None, None, None, 32)
(None, None, None, 32)
(None, None, None, 32)
(None, None, None, 32)
(None, None, None, 16)
(None, None, None, 16)
(None, None, None, 16)
(None, None, None, 16)
(None, None, None, 16)
(None, None, None, 16)
(None, None, None, 2)
(None, None, None, 2)
下面显示的是我的数据准备管道,每个图像有两个掩码。我尝试为每个输入图像堆叠掩码1和掩码2:
ids = next(os.walk("data/train/image"))[2]
print("No. of images = ", len(ids))
X = np.zeros((len(ids), im_height, im_width, 3), dtype=np.float32) #RGB input
Y = np.zeros((len(ids), im_height, im_width, 1), dtype=np.float32) #grayscale input for the masks
for n, id_ in tqdm(enumerate(ids), total=len(ids)):
img = load_img("data/train/image/"+id_, color_mode = "rgb")
x_img = img_to_array(img)
x_img = resize(x_img, (224,224,3),
mode = 'constant', preserve_range = True)
# Load mask
mask1 = img_to_array(load_img("data/train/label1/"+id_, color_mode = "grayscale"))
mask2 = img_to_array(load_img("data/train/label2/"+id_, color_mode = "grayscale"))
mask1 = resize(mask1, (224,224,1),
mode = 'constant', preserve_range = True)
mask2 = resize(mask2, (224,224,1),
mode = 'constant', preserve_range = True)
mask = np.stack([mask1,mask2], axis=-1)
# Save images
X[n] = x_img/255.0
Y[n] = mask/255.0
X_tr, X_val, Y_tr, Y_val = train_test_split(X, Y, test_size=0.3, random_state=42)
出现以下错误:
Traceback (most recent call last):
File "/home/codes/untitled1.py", line 482, in <module>
Y[n] = mask/255.0
ValueError: could not broadcast input array from shape (224,224,1,2) into shape (224,224,1)
我应该使用什么正确的语法,并修改代码来堆叠掩码和训练多标签模型?感谢并期待代码中的更正。
1条答案
按热度按时间zysjyyx41#
您需要更新
Y
的定义,因为它包含两个遮罩,并且形状应该与模型的输出相匹配:然后重新塑造遮罩:
(我不确定,但可以直接将其堆栈到Y[n]:
在这种情况下不需要整形)