opencv 基于视差图的深度估计

5ssjco0h  于 2022-11-24  发布在  其他
关注(0)|答案(1)|浏览(154)

我正在尝试从视差图中估计一个点的深度。首先,我进行了立体校准并校正了图像,然后找到了视差图。我使用了OpenCV中的StereoSGBM。由于视差是指立体对的左右图像中两个对应点之间的距离,因此:

x_右= x_左+差异

通过校准,我获得了外部和内部参数,然后计算了基线和焦距。

## Read image
img_left=cv.imread('images/testLeft/testL0.png')
img_right=cv.imread('images/testRight/testR0.png')
    
# Grayscale Images
frame_left = cv.cvtColor(img_left,cv.COLOR_BGR2GRAY)
frame_right = cv.cvtColor(img_right,cv.COLOR_BGR2GRAY)

# Undistort and rectify images
frame_left_rect = cv.remap(frame_left, stereoMapL_x, stereoMapL_y, cv.INTER_LANCZOS4, cv.BORDER_CONSTANT,0)
frame_right_rect = cv.remap(frame_right, stereoMapR_x, stereoMapR_y, cv.INTER_LANCZOS4, cv.BORDER_CONSTANT,0)
    
# Creating an object of StereoBM algorithm
Left_matcher = cv.StereoSGBM_create(
   minDisparity=-1, numDisparities=16*3,  
   blockSize=5,
   P1=8 * 2 * blockSize**2,
   P2=32 * 2 * blockSize**2,
   disp12MaxDiff=1,
   uniquenessRatio=10,
   speckleWindowSize=100,
   speckleRange=32,
   mode=cv.STEREO_SGBM_MODE_SGBM_3WAY

#===========================================================================
# Compute Disparity Map
#===========================================================================
disparity = Left_Matcher.compute(frame_left_rect, frame_right_rect)
# Convert to float32 and divide by 16 - read documentation for point cloud
disparity = np.float32(np.divide(disparity,16.0))

disp_test = cv.applyColorMap(np.uint8(disparity), cv.COLORMAP_PLASMA)
cv.imshow("Disparity Map",disp_test)  

#==========================================================================
# Depth Map
#==========================================================================
depth_map = np.ones(disparity.shape)
# Focal Length - Pixels | Baseline -cm | Depth_map - cm
depth_map = focal_length * Baseline /disparity

我的问题是深度是错误的。有没有人能帮助我如何使用视差图来达到深度。我可能会使用reprojectImageTo3D,但我认为我的视差图有问题。
第一次

v64noz0r

v64noz0r1#

检查摄像机参数fx、fy、Cx、Cy是否与图像的空间维度一致。

相关问题