我正在解决的问题:
我想实现一个库并在pyhon中使用它。
我面临的问题:在编译代码并尝试在python中导入模块后,我得到了一个ImportError,提到了未定义的符号。确切的文本如下:
“'Python 3.10.6(main,Nov 2 2022,18:53:38)[愚者11.3.0]在Linux上键入“帮助”、“版权”、“信用额度”或“许可证”以获取更多信息。
导入RPA Traceback(最近调用最后):文件“"的第1行位于ImportError:/home/blub/递归分区算法/RPA.cpython-310-x86_64-linux-gnu.so:未定义的符号:* Z18标准位置B5PiS_S_S * ′ ′
**我用来编译模块的命令行:**一月一日
下面是我尝试编译的代码。'
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <map>
#include <sys/resource.h>
#include <sys/time.h>
#include <sys/times.h>
#include <iostream>
#include <pybind11/pybind11.h>
#include "bd.h"
#include "sets.h"
#include "draw.h"
#include "graphics.h"
#include "util.h"
#define STRINGIFY(x) #x
#define MACRO_STRINGIFY(x) STRINGIFY(x)
namespace py = pybind11;
/******************************************************************
******************************************************************/
int solve(int L, int *q);
/* Lower and upper bounds of each rectangular subproblem. */
int **lowerBound, **upperBound;
/* Arrays of indices for indexing the matrices that store information
* about rectangular subproblems (L,W), where (L,W) belongs to X' x Y'
* and X' and Y' are the raster points sets associated to (L,l,w) and
* (W,l,w), respectively. */
int *indexX, *indexY;
/* Set of integer conic combinations of l and w:
* X = {x | x = rl + sw, with r,w in Z and r,w >= 0} */
Set normalSetX;
/* Array that stores the normalized values of each integer between 0 and
* L (dimension of the problem):
* normalize[x] = max {r in X' | r <= x} */
int *normalize;
/* Store the solutions of the subproblems. */
std::map<int, int> *solutionMap;
int *solution;
/* Store the division points in the rectangular and in the L-shaped
* pieces associated to the solutions found. */
std::map<int, int> *divisionPointMap;
int *divisionPoint;
/* Dimensions of the boxes to be packed. */
int l, w;
/* Type of the structure used to store the solutions. */
int memory_type;
/* Store the points that determine the divisions of the rectangles. */
CutPoint **cutPoints;
int *indexRasterX, *indexRasterY;
int numRasterX, numRasterY;
/******************************************************************
******************************************************************/
inline int roundToNearest(double a) {
return (int) floor(a + 0.5);
}
/******************************************************************
******************************************************************/
/**
* Calculate the upper bound of a given rectangle R(x,y) (degenerated L).
*
* Parameters:
* x - Length of the rectangle.
*
* y - Width of the rectangle.
*
* Return:
* The computed upper bound.
*/
inline int R_UpperBound(int x, int y) {
/* A(R) / lw */
x = normalize[x];
y = normalize[y];
return upperBound[indexX[x]][indexY[y]];
}
/******************************************************************
******************************************************************/
/**
* Calculate the upper bound of a given L.
*
* Parameters:
* q - The L-piece.
*
* Return:
* The computed upper bound for this L-piece.
*/
inline int L_UpperBound(int *q) {
/* Area(L) / lw */
return (q[0] * q[1] - (q[0] - q[2]) * (q[1] - q[3])) / (l * w);
}
/******************************************************************
******************************************************************/
/**
* Calculate the lower bound of a given rectangle R(x,y) (degenerated L).
*
* Parameters:
* x - Length of the rectangle.
*
* y - Width of the rectangle.
*
* Return:
* The computed lower bound.
*/
inline int R_LowerBound(int x, int y) {
x = normalize[x];
y = normalize[y];
return lowerBound[indexX[x]][indexY[y]];
}
/******************************************************************
******************************************************************/
/**
* Calculate the lower bound of a given L. It divides the L in two
* rectangles and calculates their lower bounds to compose the lower
* bound of the L-piece.
*
* +-----+ +-----+ +-----+
* | | | | | |
* | | | | | |
* | +----+ --> +-----+----+ or | +----+
* | | | | | | |
* | | | | | | |
* +----------+ +----------+ +-----+----+
* (a) (b)
*
* Parameters:
* q - The L-piece.
*
* Return:
* The computed lower bound.
*/
inline int L_LowerBound(int *q, bool *horizontalCut) {
int a = lowerBound[indexX[normalize[q[2] ]]]
[indexY[normalize[q[1] - q[3]]]]
+
lowerBound[indexX[normalize[q[0]]]]
[indexY[normalize[q[3]]]];
int b = lowerBound[indexX[normalize[q[2]]]]
[indexY[normalize[q[1]]]]
+
lowerBound[indexX[normalize[q[0] - q[2]]]]
[indexY[normalize[q[3] ]]];
if(a > b) {
*horizontalCut = true;
return a;
}
else {
*horizontalCut = false;
return b;
}
}
/******************************************************************
******************************************************************/
/**
* Divide an L-piece in two new L-pieces, according to the specified
* subdivision, and normalize the two ones.
*
* Parameters:
* i - Point that determines the division int the L-piece.
*
* q - The L-piece to be divided.
*
* q1 - It will store a new L-piece.
*
* q2 - It will store the other new L-piece.
*
* standardPosition - Pointer to the function that will divide the L-piece.
*/
void divide(int *i, int *q, int *q1, int *q2,
void (*standardPosition)(int*, int*, int*, int*)) {
/* Divide the L-piece in two new ones. */
(*standardPosition)(i, q, q1, q2);
/* Normalize the new L-pieces. */
normalizePiece(q1);
normalizePiece(q2);
}
/******************************************************************
******************************************************************/
/**
* Return the solution of the L-piece related to the index L.
*
* Parameters:
* L - Index of the L-piece.
*
* key - Key for this L-piece.
*
* Return:
* The current solution of the specified L-piece.
*/
inline int getSolution(int L, int key) {
if(memory_type == MEM_TYPE_4) {
return solution[L] & nRet;
}
else {
return solutionMap[L][key] & nRet;
}
}
/******************************************************************
******************************************************************/
/**
* Return the solution of the L-piece related to the index L.
*
* Parameters:
* L - Index of the L-piece.
*
* q - The L-piece.
*
* Returns:
* The current solution of the specified L-piece.
*/
inline int getSolution(int L, int *q) {
if(memory_type == MEM_TYPE_4) {
return solution[L] & nRet;
}
else {
int key = getKey(q[0], q[1], q[2], q[3], memory_type);
return solutionMap[L][key] & nRet;
}
}
/******************************************************************
******************************************************************/
/**
* Return the solution of the L-piece related to the index L.
*
* Parameters:
* L - Index of the L-piece.
*
* q - The L-piece.
*
* key - Key for this L-piece.
*
* Return:
* The current solution of the specified L-piece.
*/
inline int getSolution(int L, int *q, int *key) {
if(memory_type == MEM_TYPE_4) {
return solution[L];
}
else {
*key = getKey(q[0], q[1], q[2], q[3], memory_type);
return solutionMap[L][*key];
}
}
/******************************************************************
******************************************************************/
/**
* Store the solution of an L-piece.
*
* Parameters:
* L - Index of the L-piece.
*
* key - Key for this L-piece.
*
* LSolution - Solution to be stored.
*
*/
inline void storeSolution(int L, int key, int LSolution) {
if(memory_type == MEM_TYPE_4) {
solution[L] = LSolution;
}
else {
solutionMap[L][key] = LSolution;
}
}
/******************************************************************
******************************************************************/
/**
* Store the point where the division in the L-piece was made.
*
* Parameters:
* L - Index of the L-piece.
*
* key - Key for this L-piece.
*
* point - Representation of the point where the division was made.
*
*/
inline void storeDivisionPoint(int L, int key, int point) {
if(memory_type == MEM_TYPE_4) {
divisionPoint[L] = point;
}
else {
divisionPointMap[L][key] = point;
}
}
/******************************************************************
******************************************************************/
/**
* Verify whether the solution is optimal.
*
* Parameters:
* L - Index of the L-piece.
*
* key - Key for this L-piece.
*
* upperBound - Upper bound for the L-piece.
*
* Return:
* Return whether the current solution for the L-piece is optimal.
*/
inline bool optimal(int L, int key, int upperBound) {
int Lsolution = getSolution(L, key);
if((Lsolution & nRet) == upperBound) {
return true;
}
return false;
}
/******************************************************************
******************************************************************/
/**
* Divide the L-piece in every possible way, according to the specified
* subdivision B.
*
* Parameters:
* L - Index of the L-piece.
*
* q - The L-piece.
*
* constraints - Constraints that determine the interval of x' and y'.
*
* B - The subdivision.
*
* standardPosition - Pointer to the function that divides the L-piece
* according to the subdivision B.
*
* X - Set of raster points.
*
* startX - Index to start the divisions on the set X.
*
* Y - Set of raster points.
*
* startY - Index to start the divisions on the set Y.
*/
int divideL(int L, int *q, int *constraints, int B,
void (*standardPosition)(int*, int*, int*, int*),
Set X, int startX, Set Y, int startY) {
/* i_k[0] <- x'
* i_k[1] <- y'
*/
int i_k[2];
int i_x, i_y;
int q1[4], q2[4];
int key = 0;
int LSolution = getSolution(L, q, &key);
int upperBound = L_UpperBound(q);
for(i_x = startX; i_x < X.size; i_x++) {
i_k[0] = X.points[i_x];
if(i_k[0] > constraints[1]) {
break;
}
for(i_y = startY; i_y < Y.size; i_y++) {
i_k[1] = Y.points[i_y];
if(i_k[1] > constraints[3]) {
break;
}
divide(i_k, q, q1, q2, (*standardPosition));
if(q1[0] < 0 || q2[0] < 0) {
continue;
}
if(L_UpperBound(q1) + L_UpperBound(q2) > (LSolution & nRet)) {
/* It is possible that this division gets a better solution. */
int L1 = LIndex(q1[0], q1[1], q1[2], q1[3], memory_type);
int L2 = LIndex(q2[0], q2[1], q2[2], q2[3], memory_type);
int L1Solution = solve(L1, q1);
int L2Solution = solve(L2, q2);
if((L1Solution & nRet) + (L2Solution & nRet) > (LSolution & nRet)) {
/* A better solution was found. */
LSolution = ((L1Solution & nRet) + (L2Solution & nRet))
| (B << descSol);
storeSolution(L, key, LSolution);
storeDivisionPoint(L, key, i_k[0] | (i_k[1] << descPtoDiv2));
if((LSolution & nRet) == upperBound) {
return LSolution;
}
}
}
}
}
return LSolution;
}
/******************************************************************
******************************************************************/
/**
* Divide the L-piece in every possible way, according to the B6
* subdivision.
*
* +-------------+--------+
* | | |
* | (x',y') | L2 |
* | o------o |
* | | (x'',y') |
* | L1 | |
* | | |
* +------+---------------+
*
* Parameters:
* L - Index of the L-piece.
*
* q - The L-piece.
*
* X - Set of raster points.
*
* Y - Set of raster points.
*/
int divideB6(int L, int *q, Set X, Set Y) {
/* i_k[0] <- x'
* i_k[1] <- y'
* i_k[2] <- x''
*/
int i_k[3];
int q1[4], q2[4];
int key = 0;
int LSolution = getSolution(L, q, &key);
int upperBound = R_UpperBound(q[0], q[1]);
int i = 0;
for(i_k[0] = X.points[i]; i < X.size; i++) {
i_k[0] = X.points[i];
int j = i;
for(i_k[2] = X.points[j]; j < X.size; j++) {
i_k[2] = X.points[j];
if(i_k[0] == 0 && i_k[2] == 0) {
continue;
}
int k = 0;
for(i_k[1] = Y.points[k]; k < Y.size; k++) {
i_k[1] = Y.points[k];
divide(i_k, q, q1, q2, standardPositionB6);
if(q1[0] < 0 || q2[0] < 0) {
continue;
}
if(L_UpperBound(q1) + L_UpperBound(q2) > (LSolution & nRet)) {
/* It is possible that this division gets a better solution. */
int L1 = LIndex(q1[0], q1[1], q1[2], q1[3], memory_type);
int L2 = LIndex(q2[0], q2[1], q2[2], q2[3], memory_type);
int L1Solution = solve(L1, q1);
int L2Solution = solve(L2, q2);
if((L1Solution & nRet) + (L2Solution & nRet) > (LSolution & nRet)) {
/* A better solution was found. */
LSolution = ((L1Solution & nRet) + (L2Solution & nRet))
| (B6 << descSol);
storeSolution(L, key, LSolution);
storeDivisionPoint(L, key, i_k[0] | (i_k[1] << descPtoDiv2) |
(i_k[2] << descPtoDiv3));
if((LSolution & nRet) == upperBound) {
return LSolution;
}
}
}
}
}
}
return LSolution;
}
/******************************************************************
******************************************************************/
/**
* Divide the L-piece in every possible way, according to the B7
* subdivision.
*
* +-------------+
* | |
* | (x',y'') |
* | o------+
* | | |
* | L1 | L2 |
* | | |
* +------o |
* | (x',y') |
* | |
* | |
* +-------------+
*
* Parameters:
* L - Index of the L-piece.
*
* q - The L-piece.
*
* X - Set of raster points.
*
* Y - Set of raster points.
*/
int divideB7(int L, int *q, Set X, Set Y) {
/* i_k[0] <- x'
* i_k[1] <- y'
* i_k[2] <- y''
*/
int i_k[3];
int q1[4], q2[4];
int key = 0;
int LSolution = getSolution(L, q, &key);
int upperBound = R_UpperBound(q[0], q[1]);
int j = 0;
for(i_k[1] = Y.points[j]; j < Y.size; j++) {
i_k[1] = Y.points[j];
int k = j;
for(i_k[2] = Y.points[k]; k < Y.size; k++) {
i_k[2] = Y.points[k];
if(i_k[1] == 0 && i_k[2] == 0) {
continue;
}
int i = 0;
for(i_k[0] = X.points[i]; i < X.size; i++) {
i_k[0] = X.points[i];
divide(i_k, q, q1, q2, standardPositionB7);
if(q1[0] < 0 || q2[0] < 0) {
continue;
}
if(L_UpperBound(q1) + L_UpperBound(q2) > (LSolution & nRet)) {
/* It is possible that this division gets a better solution. */
int L1 = LIndex(q1[0], q1[1], q1[2], q1[3], memory_type);
int L2 = LIndex(q2[0], q2[1], q2[2], q2[3], memory_type);
int L1Solution = solve(L1, q1);
int L2Solution = solve(L2, q2);
if(((L1Solution & nRet) + (L2Solution & nRet)) > (LSolution & nRet)) {
/* A better solution was found. */
LSolution = ((L1Solution & nRet) + (L2Solution & nRet))
| (B7 << descSol);
storeSolution(L, key, LSolution);
storeDivisionPoint(L, key, i_k[0] | (i_k[1] << descPtoDiv2) |
(i_k[2] << descPtoDiv3));
if((LSolution & nRet) == upperBound) {
return LSolution;
}
}
}
}
}
}
return LSolution;
}
/******************************************************************
******************************************************************/
/**
* Solve the problem of packing rectangular (l,w)-boxes into the
* specified L-shaped piece.
*
* Parameters:
* L - Index of the L-piece.
*
* q - The L-piece. q = {X, Y, x, y}.
*/
int solve(int L, int *q) {
int key = 0;
if(memory_type == MEM_TYPE_4) {
if(solution[L] != -1) {
/* This problem has already been solved. */
return solution[L];
}
}
else {
key = getKey(q[0], q[1], q[2], q[3], memory_type);
if(solutionMap[L].count(key) > 0) {
/* This problem has already been solved. */
return solutionMap[L][key];
}
}
if(q[0] != q[2]) {
bool horizontalCut;
int lowerBound = L_LowerBound(q, &horizontalCut);
int upperBound = L_UpperBound(q);
int LSolution = lowerBound | (B1 << descSol);
if(horizontalCut)
storeDivisionPoint(L, key, 0 | (q[3] << descPtoDiv2));
else
storeDivisionPoint(L, key, q[2] | (0 << descPtoDiv2));
storeSolution(L, key, LSolution);
/* Try to solve this problem with homogeneous packing (or other
* better solution already computed). */
if((LSolution & nRet) != upperBound) {
/* It was not possible to solve this problem with homogeneous
* packing. */
int constraints[4];
int startX = 0;
int startY = 0;
/* Construct the raster points sets X and Y. */
Set X, Y;
constructRasterPoints(q[0], q[1], &X, &Y, normalSetX);
for(startX = 0; X.points[startX] < q[2]; startX++);
for(startY = 0; Y.points[startY] < q[3]; startY++);
/***********************************
* 0 <= x' <= x and 0 <= y' <= y *
***********************************/
constraints[0] = 0; constraints[1] = q[2];
constraints[2] = 0; constraints[3] = q[3];
/CODE IS MISSING DUE TO CHARACTER LIMITATION/
/******************************************************************
******************************************************************/
void makeIndices(int L, int W) {
Set X, Y, raster;
constructRasterPoints(L, W, &X, &Y, normalSetX);
int j = 0;
int k = 0;
int i = 0;
raster = newSet(L + 2);
while(i < X.size && X.points[i] <= L &&
j < Y.size && Y.points[j] <= W) {
if(X.points[i] == Y.points[j]) {
raster.points[k++] = X.points[i++];
raster.size++;
j++;
}
else if(X.points[i] < Y.points[j]) {
raster.points[k++] = X.points[i++];
raster.size++;
}
else {
raster.points[k++] = Y.points[j++];
raster.size++;
}
}
while(i < X.size && X.points[i] <= L) {
if(X.points[i] > raster.points[k-1]) {
raster.points[k++] = X.points[i];
raster.size++;
}
i++;
}
if(k > 0 && raster.points[k-1] < L) {
raster.points[k++] = L;
raster.size++;
}
raster.points[k] = L + 1;
raster.size++;
try {
indexRasterX = new int[L + 2];
indexRasterY = new int[W + 2];
}
catch (std::exception& e) {
std::cout << "Error allocating memory." << std::endl;
exit(0);
}
j = 0;
numRasterX = 0;
for(int i = 0; i <= L; i++) {
if(raster.points[j] == i) {
indexRasterX[i] = numRasterX++;
j++;
}
else {
indexRasterX[i] = indexRasterX[i - 1];
}
}
indexRasterX[L + 1] = indexRasterX[L] + 1;
j = 0;
numRasterY = 0;
for(int i = 0; i <= W; i++) {
if(raster.points[j] == i) {
indexRasterY[i] = numRasterY++;
j++;
}
else {
indexRasterY[i] = indexRasterY[i - 1];
}
}
indexRasterY[W + 1] = indexRasterY[W] + 1;
free(raster.points);
free(X.points);
free(Y.points);
}
/******************************************************************
******************************************************************/
void freeMemory() {
if(memory_type == MEM_TYPE_4) {
delete[] solution;
delete[] divisionPoint;
}
else {
delete[] solutionMap;
delete[] divisionPointMap;
}
delete[] indexRasterX;
delete[] indexRasterY;
}
/******************************************************************
******************************************************************/
bool tryAllocateMemory(int size) {
try {
solutionMap = new std::map<int, int>[size];
}
catch (std::exception& e) {
if(size == 0) {
std::cout << "Error allocating memory." << std::endl;
exit(0);
}
return false;
}
try {
divisionPointMap = new std::map<int, int>[size];
}
catch (std::exception& e) {
delete [] solutionMap;
delete [] divisionPointMap;
if(size == 0) {
std::cout << "Error allocating memory." << std::endl;
exit(0);
}
return false;
}
return true;
}
/******************************************************************
******************************************************************/
void allocateMemory() {
memory_type = MEM_TYPE_4;
int nL = roundToNearest((pow((double)numRasterX,
ceil((double)memory_type / 2.0)) *
pow((double)numRasterY,
floor((double)memory_type / 2.0))));
memory_type--;
if(nL >= 0) {
try {
solution = new int[nL];
try {
divisionPoint = new int[nL];
for(int i = 0; i < nL; i++)
solution[i] = -1;
}
catch (std::exception& e) {
delete[] solution;
do {
nL = roundToNearest((pow((double)numRasterX,
ceil((double)memory_type/ 2.0)) *
pow((double)numRasterY,
floor((double)memory_type / 2.0))));
memory_type--;
if(nL >= 0 && tryAllocateMemory(nL)) {
break;
}
} while(memory_type >= 0);
}
}
catch (std::exception& e) {
do {
nL = roundToNearest((pow((double)numRasterX,
ceil((double)memory_type / 2.0)) *
pow((double)numRasterY,
floor((double)memory_type / 2.0))));
memory_type--;
if(nL >= 0 && tryAllocateMemory(nL)) {
break;
}
} while(memory_type >= 0);
}
}
else {
do {
nL = roundToNearest((pow((double)numRasterX,
ceil((double)memory_type / 2.0)) *
pow((double)numRasterY,
floor((double)memory_type / 2.0))));
memory_type--;
if(nL >= 0 && tryAllocateMemory(nL)) {
break;
}
} while(memory_type >= 0);
}
memory_type++;
}
/******************************************************************
******************************************************************/
int calculate_boxes(int L, int W, int l, int w) {
int q[4];
int BD_solution, L_solution;
int INDEX;
double BD_time, L_time;
struct rusage usage, prev_usage;
int L_n, W_n;
/* Read L, W, l and w from standard input. */
if(L < W) {
std::swap(L, W);
}
memory_type = 5;
/* Try to solve the problem with Algorithm 1. */
getrusage(RUSAGE_SELF, &prev_usage);
BD_solution = solve_BD(L, W, l, w, 0);
getrusage(RUSAGE_SELF, &usage);
BD_time =
(((double) usage.ru_utime.tv_sec +
((double) usage.ru_utime.tv_usec / 1e06)) -
((double) prev_usage.ru_utime.tv_sec +
((double) prev_usage.ru_utime.tv_usec / 1e06)));
printf("\nPhase 1 (Five-block Algorithm)\n");
printf(" - solution found: %d box", BD_solution);
if(BD_solution >= 2) {
printf("es");
}
printf(".\n");
printf(" - runtime: %.2f second", BD_time);
if(BD_time >= 2.0) {
printf("s");
}
printf("\n");
L_solution = -1;
L_time = 0.0;
L_n = normalize[L];
W_n = normalize[W];
if(BD_solution != upperBound[indexX[L_n]][indexY[W_n]]) {
/* The solution obtained by Algorithm 1 is not known to be
* optimal. Then it will try to solve the problem with
* L-Algorithm. */
getrusage(RUSAGE_SELF, &prev_usage);
makeIndices(L_n, W_n);
allocateMemory();
q[0] = q[2] = L_n;
q[1] = q[3] = W_n;
INDEX = LIndex(q[0], q[1], q[2], q[3], memory_type);
solve(INDEX, q);
L_solution = getSolution(INDEX, q);
draw(L, W, INDEX, q, L_solution & nRet, true);
freeMemory();
getrusage(RUSAGE_SELF, &usage);
L_time = (((double) usage.ru_utime.tv_sec +
((double) usage.ru_utime.tv_usec / 1e06)) -
((double) prev_usage.ru_utime.tv_sec +
((double) prev_usage.ru_utime.tv_usec / 1e06)));
printf("\nPhase 2 (L-Algorithm)\n");
printf(" - solution found: %d box", L_solution);
if(L_solution >= 2) {
printf("es");
}
printf(".\n");
printf(" - runtime: %.2f second", L_time);
if(L_time >= 2.0) {
printf("s");
}
printf("\n");
}
else {
q[0] = q[2] = L_n;
q[1] = q[3] = W_n;
draw(L, W, 0, q, BD_solution, false);
}
int n = std::max(BD_solution, L_solution);
printf("\nSolution found: %d box", n);
if(n >= 2) {
printf("es");
}
printf(".\n");
int upper = upperBound[indexX[L_n]][indexY[W_n]];
printf("\nComputed upper bound: %d box", upper);
if(upper >= 2) {
printf("es");
}
printf(".\n");
if(upper == n) {
printf("Proven optimal solution.\n");
}
double time = BD_time + L_time;
printf("Runtime: %.2f second", time);
if(time >= 2.0) {
printf("s");
}
printf(".\n");
for(int i = 0; i < normalSetX.size; i++) {
free(lowerBound[i]);
free(upperBound[i]);
free(cutPoints[i]);
}
delete[] lowerBound;
delete[] upperBound;
delete[] cutPoints;
delete[] indexX;
delete[] indexY;
delete[] normalize;
delete[] normalSetX.points;
return n;
}
PYBIND11_MODULE(RecPartAlgorithm, m) {
m.doc() = R"pbdoc(
Pybind11 example plugin
-----------------------
.. currentmodule:: RecPartAlgorithm
.. autosummary::
:toctree: _generate
add
subtract
)pbdoc";
m.def("calculate_boxes", &calculate_boxes, R"pbdoc(
calculates boxes
Some other explanation about the add function.
)pbdoc");
#ifdef VERSION_INFO
m.attr("__version__") = MACRO_STRINGIFY(VERSION_INFO);
#else
m.attr("__version__") = "dev";
#endif
}
`
我试着确保python和cpython版本匹配。试着使用不同的python版本,也试着使用conda和python虚拟环境。试着使用make文件而不是g++命令行工具。任何帮助/想法/输入都会有很大帮助!
1条答案
按热度按时间kqhtkvqz1#
这个问题发生在编译过程中。正如上面的命令所提到的。我现在已经使用cmake并通过pybind11_add_module将所有文件包含在CMakeLists.txt文件中,而不是从命令行使用compilr。这解决了这个问题。