我想做一个有多个输入的模型。所以,我试着做一个这样的模型。
# define two sets of inputs
inputA = Input(shape=(32,64,1))
inputB = Input(shape=(32,1024))
# CNN
x = layers.Conv2D(32, kernel_size = (3, 3), activation = 'relu')(inputA)
x = layers.Conv2D(32, (3,3), activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(0.2)(x)
x = layers.Flatten()(x)
x = layers.Dense(500, activation = 'relu')(x)
x = layers.Dropout(0.5)(x)
x = layers.Dense(500, activation='relu')(x)
x = Model(inputs=inputA, outputs=x)
# DNN
y = layers.Flatten()(inputB)
y = Dense(64, activation="relu")(y)
y = Dense(250, activation="relu")(y)
y = Dense(500, activation="relu")(y)
y = Model(inputs=inputB, outputs=y)
# Combine the output of the two models
combined = concatenate([x.output, y.output])
# combined outputs
z = Dense(300, activation="relu")(combined)
z = Dense(100, activation="relu")(combined)
z = Dense(1, activation="softmax")(combined)
model = Model(inputs=[x.input, y.input], outputs=z)
model.summary()
opt = Adam(lr=1e-3, decay=1e-3 / 200)
model.compile(loss = 'sparse_categorical_crossentropy', optimizer = opt,
metrics = ['accuracy'])
和摘要:_
但是,当我试着训练这个模型时,
history = model.fit([trainimage, train_product_embd],train_label,
validation_data=([validimage,valid_product_embd],valid_label), epochs=10,
steps_per_epoch=100, validation_steps=10)
问题发生....:
ResourceExhaustedError Traceback (most recent call
last) <ipython-input-18-2b79f16d63c0> in <module>()
----> 1 history = model.fit([trainimage, train_product_embd],train_label,
validation_data=([validimage,valid_product_embd],valid_label),
epochs=10, steps_per_epoch=100, validation_steps=10)
4 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/client/session.py
in __call__(self, *args, **kwargs) 1470 ret =
tf_session.TF_SessionRunCallable(self._session._session, 1471
self._handle, args,
-> 1472 run_metadata_ptr) 1473 if run_metadata: 1474
proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
ResourceExhaustedError: 2 root error(s) found. (0) Resource
exhausted: OOM when allocating tensor with shape[800000,32,30,62] and
type float on /job:localhost/replica:0/task:0/device:GPU:0 by
allocator GPU_0_bfc [[{{node conv2d_1/convolution}}]] Hint: If you
want to see a list of allocated tensors when OOM happens, add
report_tensor_allocations_upon_oom to RunOptions for current
allocation info.
[[metrics/acc/Mean_1/_185]] Hint: If you want to see a list of
allocated tensors when OOM happens, add
report_tensor_allocations_upon_oom to RunOptions for current
allocation info.
(1) Resource exhausted: OOM when allocating tensor with
shape[800000,32,30,62] and type float on
/job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
[[{{node conv2d_1/convolution}}]] Hint: If you want to see a list of
allocated tensors when OOM happens, add
report_tensor_allocations_upon_oom to RunOptions for current
allocation info.
0 successful operations. 0 derived errors ignored.
谢谢你的阅读,希望能帮助我:)
4条答案
按热度按时间5gfr0r5j1#
Dense
,Conv2D
图层中的滤镜数量batch_size
(或增加steps_per_epoch
和validation_steps
)tf.image.rgb_to_grayscale
)MaxPooling2D
层tf.image.resize
)float
精度,即np.float32
有关此错误的更多有用信息:
这是一个奇怪的形状。如果你正在处理图像,你通常应该有3个或1个通道。最重要的是,看起来你是在一次传递你的整个数据集;您应该成批传递它。
lvjbypge2#
从
[800000,32,30,62]
看,您的模型似乎将所有数据放在一个批处理中。尝试指定的批处理大小,如
如果仍然OOM,则尝试减少
batch_size
iibxawm43#
我也是。
您可以尝试通过使用某种形式的迁移学习来减少可训练参数-尝试冻结最初的几个层并使用较低的批处理大小。
jv4diomz4#
我认为这种情况最常见的原因是缺少MaxPool层。使用相同的架构,但在Conv2D层之后至少添加一个MaxPool层。这甚至可能提高模型的整体性能。您甚至可以尝试减少模型的深度,即删除不必要的层并进行优化。