我尝试使用OpenMP并行化Dijkstra,但程序无法正常运行。有时显示正确的结果,而有时得到错误的值。我假设这是因为多个线程正在更新同一个变量。但是我找不到这个问题的根源,因为我正在关键区域内进行共享变量更新。有人能帮我确定我犯了什么错误吗?我的作业很快就要到期了,这段代码在概念上是正确的吗?
第一个
序列号:
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
// A utility function to print the constructed distance
// array
void printSolution(int dist[])
{
printf("Vertex \t\t Distance from Source\n");
for (int i = 0; i < V; i++)
printf("%d \t\t\t\t %d\n", i, dist[i]);
}
// Function that implements Dijkstra's single source
// shortest path algorithm for a graph represented using
// adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
int dist[V]; // The output array. dist[i] will hold the
// shortest
// distance from src to i
bool sptSet[V]; // sptSet[i] will be true if vertex i is
// included in shortest
// path tree or shortest distance from src to i is
// finalized
// Initialize all distances as INFINITE and stpSet[] as
// false
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum distance vertex from the set of
// vertices not yet processed. u is always equal to
// src in the first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the
// picked vertex.
for (int v = 0; v < V; v++)
{
// Update dist[v] only if is not in sptSet,
// there is an edge from u to v, and total
// weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v]
&& dist[u] != INT_MAX
&& dist[u] + graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
}
// print the constructed distance array
printSolution(dist);
}
1条答案
按热度按时间yquaqz181#
Dijkstra算法是一个很好的算法示例,其中标准公式很难并行化。1.找到最小值2.更新其邻居的每一步都依赖于前一步。因此,您最多只能做到1.将该最小值转化为OpenMP约简2.将更新转化为并行循环。在度数较小的图上,这不会给您带来太多加速。这也意味着您的代码不正确:您正试图并行化外部步骤,这些步骤是顺序的。
但是,您不必仅更新该最小点的相邻点:你可以更新每一步中的所有点。2这简化了代码,减少了开销。3它也做了更多的工作,但是在挂钟时间里它可能完成得稍微快一点。