pytorch torch.cat((x1,x2,x3,x4),1)的大小不匹配

imzjd6km  于 2022-12-04  发布在  其他
关注(0)|答案(1)|浏览(197)

我将基于this paper创建一个如下图所示的模型

但concat与大小不匹配,因此出现错误

RuntimeError: Sizes of tensors must match except in dimension 1. Expected size 128 but got size 64 for tensor number 2 in the list.

我的代码:

import torch
from torch import nn
import torch.nn.functional as F
class DepthwiseConv2d(torch.nn.Conv2d):
    def __init__(self,
                 in_channels,
                 depth_multiplier=1,
                 kernel_size=3,
                 stride=1,
                 padding=0,
                 dilation=1,
                 bias=True,
                 padding_mode='zeros'
                 ):
        out_channels = in_channels * depth_multiplier
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=in_channels,
            bias=bias,
            padding_mode=padding_mode
        )
class InceptionEEGNet(nn.Module):
  def __init__(self,bathsize): # input = (1,22,256)
    super().__init__()
    self.bathsize = bathsize
    self.conv2d_1 = nn.Conv2d(1,64,(1,16),padding='same')
    self.batchnorm2d_1 = nn.BatchNorm2d(64)
    self.conv2d_2 = DepthwiseConv2d(64,depth_multiplier=4,kernel_size=(22,1),padding='valid')
    self.batchnorm2d_elu_1 = nn.Sequential(
        nn.BatchNorm2d(256),
        nn.ELU()
        )
    self.averagepooling = nn.Sequential(
        nn.AvgPool2d((1,2)),
        nn.Dropout2d(p=0.5)
    )
    self.inception_block_1 = nn.Sequential(
        nn.Conv2d(256,64,(1,1),padding='same'),
        nn.Conv2d(64,64,(1,7),padding='same'),
    )
    self.inception_block_2 = nn.Sequential(
        nn.Conv2d(256,64,(1,1),padding='same'),
        nn.Conv2d(64,64,(1,9),padding='same'),
    )
    self.inception_block_3 = nn.Sequential(
        nn.AvgPool2d((1,2)),
        nn.Conv2d(256,64,(1,1),padding='same'),
    )
    self.inception_block_4 =  nn.Conv2d(256,64,(1,1),stride=(1,2))
    self.batchnorm2d_elu_2 = nn.Sequential(
        nn.BatchNorm2d(64),
        nn.ELU(),
        nn.Dropout2d(p=0.5)
        )
    self.conv2d_3 = nn.Conv2d(256,256,(1,5),padding='same')

  def forward(self,x):
    x = self.conv2d_1(x)
    x = self.batchnorm2d_1(x)
    x = self.conv2d_2(x)
    x = self.batchnorm2d_elu_1(x)
    x = self.averagepooling(x)
    print(x.shape)
    x1 = self.inception_block_1(x)
    print(x1.shape)
    x2 = self.inception_block_2(x)
    x3 = self.inception_block_3(x)
    x4 = self.inception_block_4(x)
    x = torch.cat((x1, x2, x3, x4), 1)
    x = self.batchnorm2d_elu_2(x)
    x = self.conv2d_3(x)
    x = self.batchnorm2d_elu_2(x)
    x = F.adaptive_avg_pool3d(x, (1,1,3))
    x = x.squeeze()
    return x

net = InceptionEEGNet(10)
x = torch.rand(10,1,22,256)
print(net(x).shape)
xdyibdwo

xdyibdwo1#

您忘记了inception_block_4中的padding=same,这会将块的输出大小更改为,从而无法容纳其他块:

self.inception_block_4 =  nn.Conv2d(256,64,(1,1),stride=(1,2), padding='same')

这对于步长卷积是不可能的,因此应该使用逐点卷积,如本文中所述:“具有核大小为1,1、跨距为(1,2)逐点卷积的分支”或深度可分离卷积,更多关于如何实现here的信息。

相关问题