我尝试使用www.example.com _xml()从Pandas Dataframe 写入xmlpd.to,并获得以下输出:
密码:
# Write pandas dataframe to custom xml format
namespaces = {
'ns0': "urn:sca:com:edi:mappings:aust:b2be:inbounddeliverydate"
}
with open('Inb.xml', 'w') as myfile:
myfile.write(data.to_xml(index=False,
root_name='MT_InboundDeliveryDate',
row_name='Row',
namespaces=namespaces,
prefix='ns0'))
输出量:
<?xml version='1.0' encoding='utf-8'?>
<ns0:MT_InboundDeliveryDate xmlns:ns0="urn:sca:com:edi:mappings:aust:b2be:inbounddeliverydate">
<ns0:Row>
<ns0:InboundID>355555106537455</ns0:InboundID>
<ns0:DocumentDate/>
<ns0:LFDAT>19082022</ns0:LFDAT>
</ns0:Row>
<ns0:Row>
<ns0:InboundID>35555552066774536</ns0:InboundID>
<ns0:DocumentDate/>
<ns0:LFDAT>03012023</ns0:LFDAT>
</ns0:Row>
</ns0:MT_InboundDeliveryDate>
但是,我需要将前缀仅应用于root_name,而不是每行
所需输出:
<?xml version='1.0' encoding='utf-8'?>
<ns0:MT_InboundDeliveryDate xmlns:ns0="urn:sca:com:edi:mappings:aust:b2be:inbounddeliverydate">
<Row>
<InboundID>355555106537455</InboundID>
<DocumentDate/>
<LFDAT>19082022</LFDAT>
</Row>
<Row>
<InboundID>35555552066774536</InboundID>
<DocumentDate/>
<LFDAT>03012023</LFDAT>
</Row>
</ns0:MT_InboundDeliveryDate>
我想实现上述所需的输出,以自动化我的系统更新脚本。
1条答案
按热度按时间ni65a41a1#
解决方法很简单: