tensorflow 文件“/model.py“,第33行,正向x_out = torch.cat(x_out,1)索引错误:维度超出范围(应该在[-1,0]范围内,但得到1)

jtw3ybtb  于 2022-12-13  发布在  其他
关注(0)|答案(1)|浏览(105)

我读了以前的答案,但无法解决这个问题。每当我运行代码,这个错误弹出在不同的历元,有时executu=ion直到50s,然后突然出现这个错误,执行停止。在其他一些时候,这个错误出现在历元16s等。

0it [00:00, ?it/s]/usr/local/lib/python3.8/dist-packages/torch/nn/functional.py:1960: UserWarning: nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.
  warnings.warn("nn.functional.sigmoid is deprecated. Use torch.sigmoid instead.")
185it [00:07, 23.88it/s]
Traceback (most recent call last):
  File "/content/drive/MyDrive/train.py", line 241, in <module>
    train()
  File "/content/drive/MyDrive/train.py", line 98, in train
    text_aligned_match, image_aligned_match, pred_similarity_match = similarity_module(fixed_text, matched_image)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/content/drive/MyDrive/model.py", line 106, in forward
    text_encoding, image_encoding = self.encoding(text, image)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/content/drive/MyDrive/model.py", line 70, in forward
    text_encoding = self.shared_text_encoding(text)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/content/drive/MyDrive/model.py", line 33, in forward
    x_out = torch.cat(x_out, 1)
IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)

行创建问题为
请输入您torch.cat。
我试过了,行创建问题是
x_out = torch.cat(x_out,dim=0),但这无法解决问题。给出以下错误

0it [00:01, ?it/s]
Traceback (most recent call last):
  File "/content/drive/MyDrive/train.py", line 241, in <module>
    train()
  File "/content/drive/MyDrive/train.py", line 98, in train
    text_aligned_match, image_aligned_match, pred_similarity_match = similarity_module(fixed_text, matched_image)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/content/drive/MyDrive/model.py", line 106, in forward
    text_encoding, image_encoding = self.encoding(text, image)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/content/drive/MyDrive/model.py", line 71, in forward
    text_shared = self.shared_text_linear(text_encoding)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/container.py", line 139, in forward
    input = module(input)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1130, in _call_impl
    return forward_call(*input, **kwargs)
  File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/linear.py", line 114, in forward
    return F.linear(input, self.weight, self.bias)
RuntimeError: mat1 and mat2 shapes cannot be multiplied (132x32 and 128x64)

代码为:

import math
import random
from random import random, seed
import torch
import torch.nn as nn
from torch.distributions import Normal, Independent
from torch.nn.functional import softplus

#random.seed(825)
seed(825)

class FastCNN(nn.Module):
    # a CNN-based altertative approach of bert for text encoding
    def __init__(self, channel=32, kernel_size=(1, 2, 4, 8)):
        super(FastCNN, self).__init__()
        self.fast_cnn = nn.ModuleList()
        for kernel in kernel_size:
            self.fast_cnn.append(
                nn.Sequential(
                    nn.Conv1d(200, channel, kernel_size=kernel),
                    nn.BatchNorm1d(channel),
                    nn.ReLU(),
                    nn.AdaptiveMaxPool1d(1)
                )
            )

    def forward(self, x):
        x = x.permute(0, 2, 1)
        x_out = []
        for module in self.fast_cnn:
            x_out.append(module(x).squeeze())
        x_out = torch.cat(x_out, dim=0)
        return x_out

class EncodingPart(nn.Module):
    def __init__(
        self,
        cnn_channel=32,
        cnn_kernel_size=(1, 2, 4, 8),
        shared_image_dim=128,
        shared_text_dim=128
    ):
        super(EncodingPart, self).__init__()
        self.shared_text_encoding = FastCNN(
            channel=cnn_channel,
            kernel_size=cnn_kernel_size
        )
        self.shared_text_linear = nn.Sequential(
            nn.Linear(128, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Dropout(),
            nn.Linear(64, shared_text_dim),
            nn.BatchNorm1d(shared_text_dim),
            nn.ReLU()
        )
        self.shared_image = nn.Sequential(
            nn.Linear(512, 256),
            nn.BatchNorm1d(256),
            nn.ReLU(),
            nn.Dropout(),
            nn.Linear(256, shared_image_dim),
            nn.BatchNorm1d(shared_image_dim),
            nn.ReLU()
        )

    def forward(self, text, image):
        text_encoding = self.shared_text_encoding(text)
        text_shared = self.shared_text_linear(text_encoding)
        image_shared = self.shared_image(image)
        return text_shared, image_shared

class SimilarityModule(nn.Module):
    def __init__(self, shared_dim=128, sim_dim=64):
        super(SimilarityModule, self).__init__()
        self.encoding = EncodingPart()
        self.text_aligner = nn.Sequential(
            nn.Linear(shared_dim, shared_dim),
            nn.BatchNorm1d(shared_dim),
            nn.ReLU(),
            nn.Linear(shared_dim, sim_dim),
            nn.BatchNorm1d(sim_dim),
            nn.ReLU()
        )
        self.image_aligner = nn.Sequential(
            nn.Linear(shared_dim, shared_dim),
            nn.BatchNorm1d(shared_dim),
            nn.ReLU(),
            nn.Linear(shared_dim, sim_dim),
            nn.BatchNorm1d(sim_dim),
            nn.ReLU()
        )
        self.sim_classifier_dim = sim_dim * 2
        self.sim_classifier = nn.Sequential(
            nn.BatchNorm1d(self.sim_classifier_dim),
            nn.Linear(self.sim_classifier_dim, 64),
            nn.BatchNorm1d(64),
            nn.ReLU(),
            nn.Linear(64, 2)
        )

    def forward(self, text, image):
        text_encoding, image_encoding = self.encoding(text, image)
        text_aligned = self.text_aligner(text_encoding)
        image_aligned = self.image_aligner(image_encoding)
        sim_feature = torch.cat([text_aligned, image_aligned], 1)
        pred_similarity = self.sim_classifier(sim_feature)
        return text_aligned, image_aligned, pred_similarity

class Encoder(nn.Module):
    def __init__(self, z_dim=2):
        super(Encoder, self).__init__()
        self.z_dim = z_dim
        # Vanilla MLP
        self.net = nn.Sequential(
            nn.Linear(64, 64),
            nn.ReLU(True),
            nn.Linear(64, z_dim * 2),
        )

    def forward(self, x):
        # x = x.view(x.size(0), -1)  # Flatten the input
        params = self.net(x)
        mu, sigma = params[:, :self.z_dim], params[:, self.z_dim:]
        sigma = softplus(sigma) + 1e-7  
        return Independent(Normal(loc=mu, scale=sigma), 1)

class AmbiguityLearning(nn.Module):
    def __init__(self):
        super(AmbiguityLearning, self).__init__()
        self.encoding = EncodingPart()
        self.encoder_text = Encoder()
        self.encoder_image = Encoder()

    def forward(self, text_encoding, image_encoding):
        # text_encoding, image_encoding = self.encoding(text, image)
        p_z1_given_text = self.encoder_text(text_encoding)
        p_z2_given_image = self.encoder_image(image_encoding)
        z1 = p_z1_given_text.rsample()
        z2 = p_z2_given_image.rsample()
        kl_1_2 = p_z1_given_text.log_prob(z1) - p_z2_given_image.log_prob(z1)
        kl_2_1 = p_z2_given_image.log_prob(z2) - p_z1_given_text.log_prob(z2)
        skl = (kl_1_2 + kl_2_1)/ 2.
        skl = nn.functional.sigmoid(skl)
        return skl

class UnimodalDetection(nn.Module):
        def __init__(self, shared_dim=128, prime_dim = 16):
            super(UnimodalDetection, self).__init__()
            self.text_uni = nn.Sequential(
                nn.Linear(shared_dim, shared_dim),
                nn.BatchNorm1d(shared_dim),
                nn.ReLU(),
                nn.Linear(shared_dim, prime_dim),
                nn.BatchNorm1d(prime_dim),
                nn.ReLU()
            )
            self.image_uni = nn.Sequential(
                nn.Linear(shared_dim, shared_dim),
                nn.BatchNorm1d(shared_dim),
                nn.ReLU(),
                nn.Linear(shared_dim, prime_dim),
                nn.BatchNorm1d(prime_dim),
                nn.ReLU()
            )

        def forward(self, text_encoding, image_encoding):
            text_prime = self.text_uni(text_encoding)
            image_prime = self.image_uni(image_encoding)
            return text_prime, image_prime

class CrossModule4Batch(nn.Module):
    def __init__(self, text_in_dim=64, image_in_dim=64, corre_out_dim=64):
        super(CrossModule4Batch, self).__init__()
        self.softmax = nn.Softmax(-1)
        self.corre_dim = 64
        self.pooling = nn.AdaptiveMaxPool1d(1)
        self.c_specific_2 = nn.Sequential(
            nn.Linear(self.corre_dim, corre_out_dim),
            nn.BatchNorm1d(corre_out_dim),
            nn.ReLU()
        )

    def forward(self, text, image):
        text_in = text.unsqueeze(2)
        image_in = image.unsqueeze(1)
        corre_dim = text.shape[1]
        similarity = torch.matmul(text_in, image_in) / math.sqrt(corre_dim)
        correlation = self.softmax(similarity)
        correlation_p = self.pooling(correlation).squeeze()
        correlation_out = self.c_specific_2(correlation_p)
        return correlation_out

class DetectionModule(nn.Module):
    def __init__(self, feature_dim=64+16+16, h_dim=64):
        super(DetectionModule, self).__init__()
        self.encoding = EncodingPart()
        self.ambiguity_module = AmbiguityLearning()
        self.uni_repre = UnimodalDetection()
        self.cross_module = CrossModule4Batch()
        self.classifier_corre = nn.Sequential(
            nn.Linear(feature_dim, h_dim),
            nn.BatchNorm1d(h_dim),
            nn.ReLU(),
            # nn.Dropout(),
            nn.Linear(h_dim, h_dim),
            nn.BatchNorm1d(h_dim),
            nn.ReLU(),
            # nn.Dropout(),
            nn.Linear(h_dim, 2)
        )

    def forward(self, text_raw, image_raw, text, image):
        # text_encoding, image_encoding = self.encoding_module(text, image)
        skl = self.ambiguity_module(text, image)
        text_prime, image_prime = self.encoding(text_raw, image_raw)
        text_prime, image_prime = self.uni_repre(text_prime, image_prime)
        correlation = self.cross_module(text, image)
        weight_uni = (1-skl).unsqueeze(1)
        weight_corre = skl.unsqueeze(1)
        text_final = weight_uni * text_prime
        img_final = weight_uni * image_prime
        corre_final = weight_corre * correlation
        final_corre = torch.cat([text_final, img_final, corre_final], 1)
        pre_label = self.classifier_corre(final_corre)
        return pre_label

请建议修复方法

rdlzhqv9

rdlzhqv91#

尝试在问题行之前打印x_out中每个Tensor的形状。我猜你的某个层给了你一个Tensor,当调用squeeze()时,它变成了一维的。

def forward(self, x):
    x = x.permute(0, 2, 1)
    x_out = []
    for module in self.fast_cnn:
        module_out = module(x).squeeze()
        
        # prints shape with < 2 dimensions before error
        print('Module out shape': module_out.shape)
        
        # potential solution
        if len(module_out.shape) < 2: 
            module_out = torch.unsqueeze(module_out, 1)
        
        x_out.append(module_out)
    x_out = torch.cat(x_out, dim=1)
    return x_out

相关问题