Pandas中的聚集

kxe2p93d  于 2022-12-16  发布在  其他
关注(0)|答案(2)|浏览(155)

1.如何使用Pandas执行聚合?
1.聚合后没有DataFrame!发生了什么?
1.如何主要聚合字符串列(到list s、tuple s、strings with separator)?
1.如何汇总计数?
1.如何创建由聚合值填充的新列?
我经常看到这样的问题,询问Pandas聚合功能的不同方面。今天,关于聚合及其各种用例的大部分信息都分散在几十篇措辞糟糕、无法搜索的帖子中。这里的目的是为子孙后代整理一些更重要的观点。
本问答将成为一系列有用的用户指南中的下一部分:

请注意,这篇文章并不意味着要取代关于聚合和groupby的文档,所以也请阅读这些文档!

e3bfsja2

e3bfsja21#

问题1

如何使用Pandas执行聚合?

扩展聚合文件。
聚合函数是减少返回对象维数的函数。这意味着输出的Series/DataFrame具有与原始数据相同或更少的行。
一些常见的聚合函数如下表所示:

**Function**    **Description**
mean()         Compute mean of groups
sum()         Compute sum of group values
size()         Compute group sizes
count()     Compute count of group
std()         Standard deviation of groups
var()         Compute variance of groups
sem()         Standard error of the mean of groups
describe()     Generates descriptive statistics
first()     Compute first of group values
last()         Compute last of group values
nth()         Take nth value, or a subset if n is a list
min()         Compute min of group values
max()         Compute max of group values
np.random.seed(123)

df = pd.DataFrame({'A' : ['foo', 'foo', 'bar', 'foo', 'bar', 'foo'],
                   'B' : ['one', 'two', 'three','two', 'two', 'one'],
                   'C' : np.random.randint(5, size=6),
                   'D' : np.random.randint(5, size=6),
                   'E' : np.random.randint(5, size=6)})
print (df)
     A      B  C  D  E
0  foo    one  2  3  0
1  foo    two  4  1  0
2  bar  three  2  1  1
3  foo    two  1  0  3
4  bar    two  3  1  4
5  foo    one  2  1  0

通过过滤柱和Cython实现的功能进行聚合:

df1 = df.groupby(['A', 'B'], as_index=False)['C'].sum()
print (df1)
     A      B  C
0  bar  three  2
1  bar    two  3
2  foo    one  4
3  foo    two  5

聚合函数用于所有未在groupby函数中指定的列,此处为A, B列:

df2 = df.groupby(['A', 'B'], as_index=False).sum()
print (df2)
     A      B  C  D  E
0  bar  three  2  1  1
1  bar    two  3  1  4
2  foo    one  4  4  0
3  foo    two  5  1  3

您还可以在groupby函数之后的列表中仅指定用于聚合的某些列:

df3 = df.groupby(['A', 'B'], as_index=False)['C','D'].sum()
print (df3)
     A      B  C  D
0  bar  three  2  1
1  bar    two  3  1
2  foo    one  4  4
3  foo    two  5  1

使用函数DataFrameGroupBy.agg得到相同的结果:

df1 = df.groupby(['A', 'B'], as_index=False)['C'].agg('sum')
print (df1)
     A      B  C
0  bar  three  2
1  bar    two  3
2  foo    one  4
3  foo    two  5

df2 = df.groupby(['A', 'B'], as_index=False).agg('sum')
print (df2)
     A      B  C  D  E
0  bar  three  2  1  1
1  bar    two  3  1  4
2  foo    one  4  4  0
3  foo    two  5  1  3

对于应用于一列的多个函数,请使用tuple s列表-新列和聚合函数的名称:

df4 = (df.groupby(['A', 'B'])['C']
         .agg([('average','mean'),('total','sum')])
         .reset_index())
print (df4)
     A      B  average  total
0  bar  three      2.0      2
1  bar    two      3.0      3
2  foo    one      2.0      4
3  foo    two      2.5      5

如果要传递多个函数,则可以传递tuple s的list

df5 = (df.groupby(['A', 'B'])
         .agg([('average','mean'),('total','sum')]))

print (df5)
                C             D             E
          average total average total average total
A   B
bar three     2.0     2     1.0     1     1.0     1
    two       3.0     3     1.0     1     4.0     4
foo one       2.0     4     2.0     4     0.0     0
    two       2.5     5     0.5     1     1.5     3

然后按列得到MultiIndex

print (df5.columns)
MultiIndex(levels=[['C', 'D', 'E'], ['average', 'total']],
           labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

要转换为列,展平MultiIndex,请将mapjoin配合使用:

df5.columns = df5.columns.map('_'.join)
df5 = df5.reset_index()
print (df5)
     A      B  C_average  C_total  D_average  D_total  E_average  E_total
0  bar  three        2.0        2        1.0        1        1.0        1
1  bar    two        3.0        3        1.0        1        4.0        4
2  foo    one        2.0        4        2.0        4        0.0        0
3  foo    two        2.5        5        0.5        1        1.5        3

另一个解决方案是传递集合函数列表,然后将MultiIndex扁平化,对于另一个列名使用str.replace

df5 = df.groupby(['A', 'B']).agg(['mean','sum'])

df5.columns = (df5.columns.map('_'.join)
                  .str.replace('sum','total')
                  .str.replace('mean','average'))
df5 = df5.reset_index()
print (df5)
     A      B  C_average  C_total  D_average  D_total  E_average  E_total
0  bar  three        2.0        2        1.0        1        1.0        1
1  bar    two        3.0        3        1.0        1        4.0        4
2  foo    one        2.0        4        2.0        4        0.0        0
3  foo    two        2.5        5        0.5        1        1.5        3

如果要使用聚合函数分别指定每个列,请传递dictionary

df6 = (df.groupby(['A', 'B'], as_index=False)
         .agg({'C':'sum','D':'mean'})
         .rename(columns={'C':'C_total', 'D':'D_average'}))
print (df6)
     A      B  C_total  D_average
0  bar  three        2        1.0
1  bar    two        3        1.0
2  foo    one        4        2.0
3  foo    two        5        0.5

您也可以传递自定义函数:

def func(x):
    return x.iat[0] + x.iat[-1]

df7 = (df.groupby(['A', 'B'], as_index=False)
         .agg({'C':'sum','D': func})
         .rename(columns={'C':'C_total', 'D':'D_sum_first_and_last'}))
print (df7)
     A      B  C_total  D_sum_first_and_last
0  bar  three        2                     2
1  bar    two        3                     2
2  foo    one        4                     4
3  foo    two        5                     1

问题2

聚合后没有DataFrame!发生了什么?

按两列或多列聚合:

df1 = df.groupby(['A', 'B'])['C'].sum()
print (df1)
A    B
bar  three    2
     two      3
foo  one      4
     two      5
Name: C, dtype: int32

首先检查Pandas对象的Indextype

print (df1.index)
MultiIndex(levels=[['bar', 'foo'], ['one', 'three', 'two']],
           labels=[[0, 0, 1, 1], [1, 2, 0, 2]],
           names=['A', 'B'])

print (type(df1))
<class 'pandas.core.series.Series'>

如何将MultiIndex Series放入色谱柱有两种解决方案:

  • 添加参数as_index=False
df1 = df.groupby(['A', 'B'], as_index=False)['C'].sum()
print (df1)
     A      B  C
0  bar  three  2
1  bar    two  3
2  foo    one  4
3  foo    two  5
df1 = df.groupby(['A', 'B'])['C'].sum().reset_index()
print (df1)
     A      B  C
0  bar  three  2
1  bar    two  3
2  foo    one  4
3  foo    two  5

如果按一列分组:

df2 = df.groupby('A')['C'].sum()
print (df2)
A
bar    5
foo    9
Name: C, dtype: int32

...使用Index获得Series

print (df2.index)
Index(['bar', 'foo'], dtype='object', name='A')

print (type(df2))
<class 'pandas.core.series.Series'>

解决方案与MultiIndex Series中的相同:

df2 = df.groupby('A', as_index=False)['C'].sum()
print (df2)
     A  C
0  bar  5
1  foo  9

df2 = df.groupby('A')['C'].sum().reset_index()
print (df2)
     A  C
0  bar  5
1  foo  9

问题3

如何主要聚合字符串列(到list s、tuple s、strings with separator)?

df = pd.DataFrame({'A' : ['a', 'c', 'b', 'b', 'a', 'c', 'b'],
                   'B' : ['one', 'two', 'three','two', 'two', 'one', 'three'],
                   'C' : ['three', 'one', 'two', 'two', 'three','two', 'one'],
                   'D' : [1,2,3,2,3,1,2]})
print (df)
   A      B      C  D
0  a    one  three  1
1  c    two    one  2
2  b  three    two  3
3  b    two    two  2
4  a    two  three  3
5  c    one    two  1
6  b  three    one  2

可以传递listtupleset来转换列,而不是传递聚合函数:

df1 = df.groupby('A')['B'].agg(list).reset_index()
print (df1)
   A                    B
0  a           [one, two]
1  b  [three, two, three]
2  c           [two, one]

另一种方法是使用GroupBy.apply

df1 = df.groupby('A')['B'].apply(list).reset_index()
print (df1)
   A                    B
0  a           [one, two]
1  b  [three, two, three]
2  c           [two, one]

若要转换为带分隔符的字符串,请仅在.join是字符串列时使用.join

df2 = df.groupby('A')['B'].agg(','.join).reset_index()
print (df2)
   A                B
0  a          one,two
1  b  three,two,three
2  c          two,one

如果是数值列,请使用lambda函数和astype转换为string s:

df3 = (df.groupby('A')['D']
         .agg(lambda x: ','.join(x.astype(str)))
         .reset_index())
print (df3)
   A      D
0  a    1,3
1  b  3,2,2
2  c    2,1

另一种解决方案是转换为groupby之前的字符串:

df3 = (df.assign(D = df['D'].astype(str))
         .groupby('A')['D']
         .agg(','.join).reset_index())
print (df3)
   A      D
0  a    1,3
1  b  3,2,2
2  c    2,1

要转换所有列,不要在groupby之后传递列列表。因为自动排除“多余”列,所以没有任何列D。这意味着排除所有数值列。

df4 = df.groupby('A').agg(','.join).reset_index()
print (df4)
   A                B            C
0  a          one,two  three,three
1  b  three,two,three  two,two,one
2  c          two,one      one,two

所以需要把所有的列都转换成字符串,然后得到所有的列:

df5 = (df.groupby('A')
         .agg(lambda x: ','.join(x.astype(str)))
         .reset_index())
print (df5)
   A                B            C      D
0  a          one,two  three,three    1,3
1  b  three,two,three  two,two,one  3,2,2
2  c          two,one      one,two    2,1

问题4

如何汇总计数?

df = pd.DataFrame({'A' : ['a', 'c', 'b', 'b', 'a', 'c', 'b'],
                   'B' : ['one', 'two', 'three','two', 'two', 'one', 'three'],
                   'C' : ['three', np.nan, np.nan, 'two', 'three','two', 'one'],
                   'D' : [np.nan,2,3,2,3,np.nan,2]})
print (df)
   A      B      C    D
0  a    one  three  NaN
1  c    two    NaN  2.0
2  b  three    NaN  3.0
3  b    two    two  2.0
4  a    two  three  3.0
5  c    one    two  NaN
6  b  three    one  2.0

函数GroupBy.sizesize的每一组:

df1 = df.groupby('A').size().reset_index(name='COUNT')
print (df1)
   A  COUNT
0  a      2
1  b      3
2  c      2

函数GroupBy.count排除缺失值:

df2 = df.groupby('A')['C'].count().reset_index(name='COUNT')
print (df2)
   A  COUNT
0  a      2
1  b      2
2  c      1

此函数应用于多列,以便对非缺失值进行计数:

df3 = df.groupby('A').count().add_suffix('_COUNT').reset_index()
print (df3)
   A  B_COUNT  C_COUNT  D_COUNT
0  a        2        2        1
1  b        3        2        3
2  c        2        1        1

Series.value_counts是一个相关函数。它返回包含降序唯一值计数的对象的大小,因此第一个元素是出现频率最高的元素。默认情况下,它不包括NaN的值。

df4 = (df['A'].value_counts()
              .rename_axis('A')
              .reset_index(name='COUNT'))
print (df4)
   A  COUNT
0  b      3
1  a      2
2  c      2

如果您想要与使用函数groupby + size相同的输出,请添加Series.sort_index

df5 = (df['A'].value_counts()
              .sort_index()
              .rename_axis('A')
              .reset_index(name='COUNT'))
print (df5)
   A  COUNT
0  a      2
1  b      3
2  c      2

问题5

如何创建由聚合值填充的新列?

方法GroupBy.transform返回一个对象,该对象的索引与分组对象相同(大小相同)。
有关详细信息,请参见Pandas文档。

np.random.seed(123)

df = pd.DataFrame({'A' : ['foo', 'foo', 'bar', 'foo', 'bar', 'foo'],
                    'B' : ['one', 'two', 'three','two', 'two', 'one'],
                    'C' : np.random.randint(5, size=6),
                    'D' : np.random.randint(5, size=6)})
print (df)
     A      B  C  D
0  foo    one  2  3
1  foo    two  4  1
2  bar  three  2  1
3  foo    two  1  0
4  bar    two  3  1
5  foo    one  2  1

df['C1'] = df.groupby('A')['C'].transform('sum')
df['C2'] = df.groupby(['A','B'])['C'].transform('sum')

df[['C3','D3']] = df.groupby('A')['C','D'].transform('sum')
df[['C4','D4']] = df.groupby(['A','B'])['C','D'].transform('sum')

print (df)

     A      B  C  D  C1  C2  C3  D3  C4  D4
0  foo    one  2  3   9   4   9   5   4   4
1  foo    two  4  1   9   5   9   5   5   1
2  bar  three  2  1   5   2   5   2   2   1
3  foo    two  1  0   9   5   9   5   5   1
4  bar    two  3  1   5   3   5   2   3   1
5  foo    one  2  1   9   4   9   5   4   4
ddrv8njm

ddrv8njm2#

If you are coming from an R or SQL background, here are three examples that will teach you everything you need to do aggregation the way you are already familiar with:
Let us first create a Pandas dataframe

import pandas as pd

df = pd.DataFrame({'key1' : ['a','a','a','b','a'],
                   'key2' : ['c','c','d','d','e'],
                   'value1' : [1,2,2,3,3],
                   'value2' : [9,8,7,6,5]})

df.head(5)

Here is how the table we created looks like:
| key1 | key2 | value1 | value2 |
| ------------ | ------------ | ------------ | ------------ |
| a | c | 1 | 9 |
| a | c | 2 | 8 |
| a | d | 2 | 7 |
| b | d | 3 | 6 |
| a | e | 3 | 5 |

1. Aggregating With Row Reduction Similar to SQL Group By

1.1 If Pandas version >=0.25

Check your Pandas version by running print(pd.__version__) . If your Pandas version is 0.25 or above then the following code will work:

df_agg = df.groupby(['key1','key2']).agg(mean_of_value_1=('value1', 'mean'),
                                         sum_of_value_2=('value2', 'sum'),
                                         count_of_value1=('value1','size')
                                         ).reset_index()

df_agg.head(5)

The resulting data table will look like this:
| key1 | key2 | mean_of_value1 | sum_of_value2 | count_of_value1 |
| ------------ | ------------ | ------------ | ------------ | ------------ |
| a | c | 1.5 | 17 | 2 |
| a | d | 2.0 | 7 | 1 |
| a | e | 3.0 | 5 | 1 |
| b | d | 3.0 | 6 | 1 |
The SQL equivalent of this is:

SELECT
      key1
     ,key2
     ,AVG(value1) AS mean_of_value_1
     ,SUM(value2) AS sum_of_value_2
     ,COUNT(*) AS count_of_value1
FROM
    df
GROUP BY
     key1
    ,key2

1.2 If Pandas version <0.25

If your Pandas version is older than 0.25 then running the above code will give you the following error:
TypeError: aggregate() missing 1 required positional argument: 'arg'
Now to do the aggregation for both value1 and value2 , you will run this code:

df_agg = df.groupby(['key1','key2'],as_index=False).agg({'value1':['mean','count'],'value2':'sum'})

df_agg.columns = ['_'.join(col).strip() for col in df_agg.columns.values]

df_agg.head(5)

The resulting table will look like this:
| key1 | key2 | value1_mean | value1_count | value2_sum |
| ------------ | ------------ | ------------ | ------------ | ------------ |
| a | c | 1.5 | 2 | 17 |
| a | d | 2.0 | 1 | 7 |
| a | e | 3.0 | 1 | 5 |
| b | d | 3.0 | 1 | 6 |
Renaming the columns needs to be done separately using the below code:

df_agg.rename(columns={"value1_mean" : "mean_of_value1",
                       "value1_count" : "count_of_value1",
                       "value2_sum" : "sum_of_value2"
                       }, inplace=True)

2. Create a Column Without Reduction in Rows ( EXCEL - SUMIF, COUNTIF )

If you want to do a SUMIF, COUNTIF, etc., like how you would do in Excel where there is no reduction in rows, then you need to do this instead.

df['Total_of_value1_by_key1'] = df.groupby('key1')['value1'].transform('sum')

df.head(5)

The resulting data frame will look like this with the same number of rows as the original:
| key1 | key2 | value1 | value2 | Total_of_value1_by_key1 |
| ------------ | ------------ | ------------ | ------------ | ------------ |
| a | c | 1 | 9 | 8 |
| a | c | 2 | 8 | 8 |
| a | d | 2 | 7 | 8 |
| b | d | 3 | 6 | 3 |
| a | e | 3 | 5 | 8 |

3. Creating a RANK Column ROW_NUMBER() OVER (PARTITION BY ORDER BY)

Finally, there might be cases where you want to create a rank column which is the SQL equivalent of ROW_NUMBER() OVER (PARTITION BY key1 ORDER BY value1 DESC, value2 ASC) .
Here is how you do that.

df['RN'] = df.sort_values(['value1','value2'], ascending=[False,True]) \
              .groupby(['key1']) \
              .cumcount() + 1

 df.head(5)

Note: we make the code multi-line by adding \ at the end of each line.
Here is how the resulting data frame looks like:
| key1 | key2 | value1 | value2 | RN |
| ------------ | ------------ | ------------ | ------------ | ------------ |
| a | c | 1 | 9 | 4 |
| a | c | 2 | 8 | 3 |
| a | d | 2 | 7 | 2 |
| b | d | 3 | 6 | 1 |
| a | e | 3 | 5 | 1 |
In all the examples above, the final data table will have a table structure and won't have the pivot structure that you might get in other syntaxes.

Other aggregating operators:

mean() Compute mean of groups
sum() Compute sum of group values
size() Compute group sizes
count() Compute count of group
std() Standard deviation of groups
var() Compute variance of groups
sem() Standard error of the mean of groups
describe() Generates descriptive statistics
first() Compute first of group values
last() Compute last of group values
nth() Take nth value, or a subset if n is a list
min() Compute min of group values
max() Compute max of group values

相关问题