Apache Spark DF.topandas()-无法在hadoop二进制路径中找到winutils二进制文件

jucafojl  于 2022-12-19  发布在  Apache
关注(0)|答案(1)|浏览(203)

我正在使用PyCharm和PySpark运行一个巨大的文本文件。
这就是我正在努力做的:

spark_home = os.environ.get('SPARK_HOME', None)
os.environ["SPARK_HOME"] = "C:\spark-2.3.0-bin-hadoop2.7"
import pyspark
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
conf = SparkConf()
sc = SparkContext(conf=conf)
spark = SparkSession.builder.config(conf=conf).getOrCreate() 
import pandas as pd
ip = spark.read.format("csv").option("inferSchema","true").option("header","true").load(r"some other file.csv")
kw = pd.read_csv(r"some file.csv",encoding='ISO-8859-1',index_col=False,error_bad_lines=False)
for i in range(len(kw)):
    rx = '(?i)'+kw.Keywords[i]
    ip = ip.where(~ip['Content'].rlike(rx))
op = ip.toPandas()
op.to_csv(r'something.csv',encoding='utf-8')

然而,PyCharm向我抛出了这个错误:

To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
2018-06-08 11:31:52 WARN  Utils:66 - Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.
Traceback (most recent call last):
  File "C:/Users/mainak.paul/PycharmProjects/Concept_Building_SIP/ThemeSparkUncoveredGames.py", line 17, in <module>
    op = ip.toPandas()
  File "C:\Python27\lib\site-packages\pyspark\sql\dataframe.py", line 1966, in toPandas
    pdf = pd.DataFrame.from_records(self.collect(), columns=self.columns)
  File "C:\Python27\lib\site-packages\pyspark\sql\dataframe.py", line 466, in collect
    port = self._jdf.collectToPython()
  File "C:\Python27\lib\site-packages\py4j\java_gateway.py", line 1160, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "C:\Python27\lib\site-packages\pyspark\sql\utils.py", line 63, in deco
    return f(*a, **kw)
  File "C:\Python27\lib\site-packages\py4j\protocol.py", line 320, in get_return_value
    format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o30.collectToPython.
: java.lang.IllegalArgumentException

我只是不明白为什么.toPandas()不工作。Spark版本是2. 3。这个版本有什么我不知道的变化吗?我在另一台装有Spark 2. 2的机器上运行了这段代码,它运行得很好。
我甚至把出口线改成这样

op = ip.where(ip['Content'].rlike(rx)).toPandas()

仍然得到同样的错误。我做错了什么?有没有其他方法可以在不牺牲性能的情况下将pyspark.sql.dataframe.DataFrame导出到.csv

已编辑我还尝试使用:

ip.write.csv('file.csv')

现在我得到了以下错误:

Traceback (most recent call last):
  File "somefile.csv", line 21, in <module>
    ip.write.csv('somefile.csv')
  File "C:\Python27\lib\site-packages\pyspark\sql\readwriter.py", line 883, in csv
    self._jwrite.csv(path)
  File "C:\Python27\lib\site-packages\py4j\java_gateway.py", line 1160, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "C:\Python27\lib\site-packages\pyspark\sql\utils.py", line 63, in deco
    return f(*a, **kw)
  File "C:\Python27\lib\site-packages\py4j\protocol.py", line 320, in get_return_value
    format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o102.csv.

添加堆栈跟踪:

Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
18/06/11 16:53:14 ERROR Shell: Failed to locate the winutils binary in the hadoop binary path
java.io.IOException: Could not locate executable C:\spark-2.3.0-bin-hadoop2.7\bin\bin\winutils.exe in the Hadoop binaries.
    at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:379)
    at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:394)
    at org.apache.hadoop.util.Shell.<clinit>(Shell.java:387)
    at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:80)
    at org.apache.hadoop.security.SecurityUtil.getAuthenticationMethod(SecurityUtil.java:611)
    at org.apache.hadoop.security.UserGroupInformation.initialize(UserGroupInformation.java:273)
    at org.apache.hadoop.security.UserGroupInformation.ensureInitialized(UserGroupInformation.java:261)
    at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:791)
    at org.apache.hadoop.security.UserGroupInformation.getLoginUser(UserGroupInformation.java:761)
    at org.apache.hadoop.security.UserGroupInformation.getCurrentUser(UserGroupInformation.java:634)
    at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2430)
    at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2430)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2430)
    at org.apache.spark.SparkContext.<init>(SparkContext.scala:295)
    at org.apache.spark.api.java.JavaSparkContext.<init>(JavaSparkContext.scala:58)
    at java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at java.base/jdk.internal.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:488)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:247)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:236)
    at py4j.commands.ConstructorCommand.invokeConstructor(ConstructorCommand.java:80)
    at py4j.commands.ConstructorCommand.execute(ConstructorCommand.java:69)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.base/java.lang.Thread.run(Thread.java:844)
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil (file:/C:/opt/spark/spark-2.2.0-bin-hadoop2.7/jars/hadoop-auth-2.7.3.jar) to method sun.security.krb5.Config.getInstance()
WARNING: Please consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util.KerberosUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
18/06/11 16:53:14 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Traceback (most recent call last):
  File "C:/Users/mainak.paul/PycharmProjects/Concept_Building_SIP/ThemeSparkUncoveredGames.py", line 22, in <module>
    op = ip.toPandas().collect()
  File "C:\Python27\lib\site-packages\pyspark\sql\dataframe.py", line 1937, in toPandas
    if self.sql_ctx.getConf("spark.sql.execution.pandas.respectSessionTimeZone").lower() \
  File "C:\Python27\lib\site-packages\pyspark\sql\context.py", line 142, in getConf
    return self.sparkSession.conf.get(key, defaultValue)
  File "C:\Python27\lib\site-packages\pyspark\sql\conf.py", line 46, in get
    return self._jconf.get(key)
  File "C:\Python27\lib\site-packages\py4j\java_gateway.py", line 1160, in __call__
    answer, self.gateway_client, self.target_id, self.name)
  File "C:\Python27\lib\site-packages\pyspark\sql\utils.py", line 63, in deco
    return f(*a, **kw)
  File "C:\Python27\lib\site-packages\py4j\protocol.py", line 320, in get_return_value
    format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o86.get.
: java.util.NoSuchElementException: spark.sql.execution.pandas.respectSessionTimeZone
    at org.apache.spark.sql.internal.SQLConf$$anonfun$getConfString$2.apply(SQLConf.scala:1089)
    at org.apache.spark.sql.internal.SQLConf$$anonfun$getConfString$2.apply(SQLConf.scala:1089)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.sql.internal.SQLConf.getConfString(SQLConf.scala:1089)
    at org.apache.spark.sql.RuntimeConfig.get(RuntimeConfig.scala:74)
    at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.base/java.lang.reflect.Method.invoke(Method.java:564)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:280)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:214)
    at java.base/java.lang.Thread.run(Thread.java:844)

Process finished with exit code 1
ws51t4hk

ws51t4hk1#

您需要按如下方式更改代码:

spark_home = os.environ.get('SPARK_HOME', None)
os.environ["SPARK_HOME"] = "C:\spark-2.3.0-bin-hadoop2.7"
import pyspark
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
conf = SparkConf()
sc = SparkContext(conf=conf)
spark = SparkSession.builder.config(conf=conf).getOrCreate() 
import pandas as pd
ip = spark.read.format("csv").option("inferSchema","true").option("header","true").load(r"some other file.csv")
kw = pd.read_csv(r"some file.csv",encoding='ISO-8859-1',index_col=False,error_bad_lines=False)
for i in range(len(kw)):
    rx = '(?i)'+kw.Keywords[i]
    ip = ip.where(~ip['Content'].rlike(rx))
op = ip.toPandas().collect()
op.to_csv(r'something.csv',encoding='utf-8')

toPandas()之后需要在PySpark中执行一个collect()操作,以实现DataFrame。但是,对于大型数据集,不应执行此操作,因为toPandas().collect()会导致数据移动到驱动程序,如果数据集太大,无法放入驱动程序内存,则驱动程序可能会崩溃。
至于这一行:ip.write.csv('file.csv')我认为应该将其更改为ip.write.csv('file:///home/your-user-name/file.csv')以将文件保存在本地Linux文件系统上,
ip.option("header", "true").csv("file:///C:/out.csv")将文件保存在本地Windows文件系统上(如果您在Windows上运行Spark和Hadoop)
ip.write.csv('hdfs:///user/your-user/file.csv')将文件保存到HDFS
一定要告诉我这个办法对你是否奏效。

    • 更新**

https://github.com/steveloughran/winutils/tree/master/hadoop-2.7.1/bin单击此链接并下载winutils.exe文件。在C盘上创建名为hadoop的文件夹,并在hadoop文件夹内创建另一个名为bin的文件夹。将之前下载的winutils. exe放入此目录。然后需要编辑系统变量并将变量HADOOP_HOME添加到列表中。一旦这样做了,你就不会从spark得到winutils/hadoop的错误。


。只需在Windows搜索中键入"编辑系统环境变量

相关问题