我的动机是构建一个自定义的对象检测web应用程序。我从model zoo下载了一个tf2
预训练的SSD Resnet1010
模型。我的想法是如果这个实现工作,我将用我自己的数据训练模型。我运行$saved_model_cli show --dir saved_model --tag_set serve --signature_def serving_default
来计算输入和输出节点。
The given SavedModel SignatureDef contains the following input(s):
inputs['input_tensor'] tensor_info:
dtype: DT_UINT8
shape: (1, -1, -1, 3)
name: serving_default_input_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['detection_anchor_indices'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100)
name: StatefulPartitionedCall:0
outputs['detection_boxes'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100, 4)
name: StatefulPartitionedCall:1
outputs['detection_classes'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100)
name: StatefulPartitionedCall:2
outputs['detection_multiclass_scores'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100, 91)
name: StatefulPartitionedCall:3
outputs['detection_scores'] tensor_info:
dtype: DT_FLOAT
shape: (1, 100)
name: StatefulPartitionedCall:4
outputs['num_detections'] tensor_info:
dtype: DT_FLOAT
shape: (1)
name: StatefulPartitionedCall:5
outputs['raw_detection_boxes'] tensor_info:
dtype: DT_FLOAT
shape: (1, 51150, 4)
name: StatefulPartitionedCall:6
outputs['raw_detection_scores'] tensor_info:
dtype: DT_FLOAT
shape: (1, 51150, 91)
name: StatefulPartitionedCall:7
Method name is: tensorflow/serving/predict
然后我将模型转换为tensorflowjs模型,方法是运行
tensorflowjs_converter --input_format=tf_saved_model --output_node_names='detection_anchor_indices,detection_boxes,detection_classes,detection_multiclass_scores,detection_scores,num_detections,raw_detection_boxes,raw_detection_scores' --saved_model_tags=serve --output_format=tfjs_graph_model saved_model js_model
这是我的javascript代码(这是在vue方法里面的)
loadTfModel: async function(){
try {
this.model = await tf.loadGraphModel(this.MODEL_URL);
} catch(error) {
console.log(error);
}
},
predictImg: async function() {
const imgData = document.getElementById('img');
let tf_img = tf.browser.fromPixels(imgData);
tf_img = tf_img.expandDims(0);
const predictions = await this.model.executeAsync(tf_img);
const data = []
for (let i = 0; i < predictions.length; i++){
data.push(predictions[i].dataSync());
}
console.log(data);
}
输出如下所示:
我的问题是,数组中的这八个项是否对应于八个定义的输出节点?如何理解这些数据?如何将其转换为人类可读的格式,如python格式?
**更新1:**我已经尝试了这个answer并编辑了我的预测方法:
predictImg: async function() {
const imgData = document.getElementById('img');
let tf_img = tf.browser.fromPixels(imgData);
tf_img = tf_img.expandDims(0);
const predictions = await this.model.executeAsync(tf_img, ['detection_classes']).then(predictions => {
const data = predictions.dataSync()
console.log('Predictions: ', data);
})
}
我最终得到了,"Error: The output 'detection_classes' is not found in the graph"
。我将感激任何帮助。
2条答案
按热度按时间0pizxfdo1#
this.model.executeAsync(tf_img, ['detection_classes'])
中指定的输出节点可能有错误。另外,在await this.model.executeAsync(tf_img, ['detection_classes'])
中不需要使用await
。使用await
或then
。获取
detection_classes
的另一个选项是对输出数组进行索引:c9x0cxw02#
我认为你首先需要检查
web_model/model.json
文件并调查输出的名称。这些是你在过滤要显示的内容时需要使用的文件(下面是我的示例文件)。