如何将二维numpy数组转换为三维数组?

5sxhfpxr  于 2022-12-23  发布在  其他
关注(0)|答案(9)|浏览(267)

我有一个形状为(x,y)的2d数组,我想把它转换成形状为(x,y,1)的3d数组,有没有一个好的Python方法可以做到这一点?

3df52oht

3df52oht1#

除了其他答案之外,您还可以对numpy.newaxis使用切片:

>>> from numpy import zeros, newaxis
>>> a = zeros((6, 8))
>>> a.shape
(6, 8)
>>> b = a[:, :, newaxis]
>>> b.shape
(6, 8, 1)

或者甚至是这样的(它适用于任意维数):

>>> b = a[..., newaxis]
>>> b.shape
(6, 8, 1)
2exbekwf

2exbekwf2#

numpy.reshape(array, array.shape + (1,))
83qze16e

83qze16e3#

import numpy as np

# create a 2D array
a = np.array([[1,2,3], [4,5,6], [1,2,3], [4,5,6],[1,2,3], [4,5,6],[1,2,3], [4,5,6]])

print(a.shape) 
# shape of a = (8,3)

b = np.reshape(a, (8, 3, -1)) 
# changing the shape, -1 means any number which is suitable

print(b.shape) 
# size of b = (8,3,1)
0ejtzxu1

0ejtzxu14#

import numpy as np

a= np.eye(3)
print a.shape
b = a.reshape(3,3,1)
print b.shape
idv4meu8

idv4meu85#

希望这个函数能帮助你把二维数组转换成三维数组。

Args:
  x: 2darray, (n_time, n_in)
  agg_num: int, number of frames to concatenate. 
  hop: int, number of hop frames. 

Returns:
  3darray, (n_blocks, agg_num, n_in)

def d_2d_to_3d(x, agg_num, hop):

    # Pad to at least one block. 
    len_x, n_in = x.shape
    if (len_x < agg_num): #not in get_matrix_data
        x = np.concatenate((x, np.zeros((agg_num - len_x, n_in))))

    # main 2d to 3d. 
    len_x = len(x)
    i1 = 0
    x3d = []
    while (i1 + agg_num <= len_x):
        x3d.append(x[i1 : i1 + agg_num])
        i1 += hop

    return np.array(x3d)
omjgkv6w

omjgkv6w6#

如果您只想向(x,y,1)添加第三个轴(x,y),Numpy允许您使用dstack命令轻松完成此操作。

import numpy as np
a = np.eye(3) # your matrix here
b = np.dstack(a).T

你需要转置(.T),使它变成你想要的(x,y,1)格式。

carvr3hs

carvr3hs7#

您可以使用整形来完成此操作
例如,您有一个形状为35 x 750(二维)的数组A,您可以使用A.reshape(35,25,30)将形状更改为35 x 25 x 30(三维)
更多信息请参见此处的文档

ajsxfq5m

ajsxfq5m8#

简单的方法,加上一些数学

一开始你知道数组元素的数量,比如说100,然后分3步划分100,比如:
25 * 2 * 2 =一百
或:4 * 5 * 5 = 100

import numpy as np
D = np.arange(100)
# change to 3d by division of 100 for 3 steps 100 = 25 * 2 * 2
D3 = D.reshape(2,2,25) # 25*2*2 = 100

另一种方式:

another_3D = D.reshape(4,5,5)
print(another_3D.ndim)

至4D:

D4 = D.reshape(2,2,5,5)
print(D4.ndim)
1bqhqjot

1bqhqjot9#

import numpy as np
# create a 2-D ndarray
a = np.array([[2,3,4], [5,6,7]])
print(a.ndim)
>> 2
print(a.shape)
>> (2, 3)

# add 3rd dimension

第一个选项:整形

b = np.reshape(a, a.shape + (1,))
print(b.ndim)
>> 3
print(b.shape)
>> (2, 3, 1)

第二个选项:扩展尺寸

c = np.expand_dims(a, axis=2)
print(c.ndim)
>> 3
print(c.shape)
>> (2, 3, 1)

相关问题