我试图改变播放速度在蔚蓝色放大器。
以下是从azure apis生成的url:https://ampdemo.azureedge.net/?url=https://testingmedia-usea.streaming.media.azure.net/bbd51d47-cc1a-4515-bac8-4053040f8c58/ignite.ism/manifest(format=mpd-time-cmaf,filter=filter1)&heuristicprofile=lowlatency
如果选中该链接,则没有播放速度。
我看到下面的链接,但不知道在哪里应用Python代码https://amp.azure.net/libs/amp/latest/docs/index.html#amp.player.options.playbackspeed
下面是我的代码:
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.mgmt.media import AzureMediaServices
from azure.storage.blob import BlobServiceClient
from azure.mgmt.media.models import (
Asset,
Transform,
TransformOutput,
BuiltInStandardEncoderPreset,
Job,
JobInputAsset,
JobOutputAsset,
OnErrorType,
Priority,
StreamingLocator,
AssetFilter,
PresentationTimeRange,
)
import os
import random
#Timer for checking job progress
import time
import requests
#Get environment variables
load_dotenv()
default_credential = DefaultAzureCredential(exclude_shared_token_cache_credential=True)
# Get the environment variables SUBSCRIPTIONID, RESOURCEGROUP and ACCOUNTNAME
subscription_id = os.getenv('SUBSCRIPTIONID')
resource_group = os.getenv('RESOURCEGROUP')
account_name = os.getenv('ACCOUNTNAME')
# The file you want to upload. For this example, put the file in the same folder as this script.
# The file ignite.mp4 has been provided for you.
source_file = "https://testingmedia.blob.core.windows.net/data/ignite.mp4"
#url = requests.get(source_file)
# This is a random string that will be added to the naming of things so that you don't have to keep doing this during testing
uniqueness = "streamAssetFilters-" + str(random.randint(0,9999))
# Change this to your specific streaming endpoint name if not using "default"
streaming_endpoint_name = "default"
# Set the attributes of the input Asset using the random number
in_asset_name = 'inputassetName' + uniqueness
in_alternate_id = 'inputALTid' + uniqueness
in_description = 'inputdescription' + uniqueness
# Create an Asset object
# The asset_id will be used for the container parameter for the storage SDK after the asset is created by the AMS client.
in_asset = Asset(alternate_id=in_alternate_id, description=in_description)
# Set the attributes of the output Asset using the random number
out_asset_name = 'outputassetName' + uniqueness
out_alternate_id = 'outputALTid' + uniqueness
out_description = 'outputdescription' + uniqueness
# Create an output asset object
out_asset = Asset(alternate_id=out_alternate_id, description=out_description)
# The AMS Client
print("Creating AMS Client")
client = AzureMediaServices(default_credential, subscription_id)
# Create an input Asset
print(f"Creating input asset {in_asset_name}")
input_asset = client.assets.create_or_update(resource_group, account_name, in_asset_name, in_asset)
# An AMS asset is a container with a specific id that has "asset-" prepended to the GUID.
# So, you need to create the asset id to identify it as the container
# where Storage is to upload the video (as a block blob)
in_container = 'asset-' + input_asset.asset_id
# create an output Asset
print(f"Creating output asset {out_asset_name}")
output_asset = client.assets.create_or_update(resource_group, account_name, out_asset_name, out_asset)
### Use the Storage SDK to upload the video ###
print(f"Uploading the file {source_file}")
blob_service_client = BlobServiceClient.from_connection_string(os.getenv('STORAGEACCOUNTCONNECTION'))
blob_client = blob_service_client.get_blob_client(in_container, "ignite.mp4")
# working_dir = os.getcwd() + "\Media"
# print(working_dir)
# print(f"Current working directory: {working_dir}")
# upload_file_path = os.path.join(working_dir, source_file)
# print(upload_file_path,"####")
# WARNING: Depending on where you are launching the sample from, the path here could be off, and not include the BasicEncoding folder.
# Adjust the path as needed depending on how you are launching this python sample file.
# Upload the video to storage as a block blob
#with open(url, "rb") as data:
blob_client.upload_blob_from_url(source_file)
transform_name = 'ContentAwareEncodingAssetFilters'
# Create a new Standard encoding Transform for Built-in Copy Codec
print(f"Creating Encoding transform named: {transform_name}")
# For this snippet, we are using 'BuiltInStandardEncoderPreset'
transform_output = TransformOutput(
preset=BuiltInStandardEncoderPreset(
preset_name="ContentAwareEncoding"
),
# What should we do with the job if there is an error?
on_error=OnErrorType.STOP_PROCESSING_JOB,
# What is the relative priority of this job to others? Normal, high or low?
relative_priority=Priority.NORMAL
)
print("Creating encoding transform...")
# Adding transform details
my_transform = Transform()
my_transform.description="Transform with Asset filters"
my_transform.outputs = [transform_output]
print(f"Creating transform {transform_name}")
transform = client.transforms.create_or_update(
resource_group_name=resource_group,
account_name=account_name,
transform_name=transform_name,
parameters=my_transform)
print(f"{transform_name} created (or updated if it existed already). ")
job_name = 'ContentAwareEncodingAssetFilters'+ uniqueness
print(f"Creating custom encoding job {job_name}")
files = (source_file)
# Create Job Input and Ouput Assets
input = JobInputAsset(asset_name=in_asset_name)
outputs = JobOutputAsset(asset_name=out_asset_name)
# Create the job object and then create transform job
the_job = Job(input=input, outputs=[outputs])
job: Job = client.jobs.create(resource_group, account_name, transform_name, job_name, parameters=the_job)
# Check job state
job_state = client.jobs.get(resource_group, account_name, transform_name, job_name)
# First check
print("First job check")
print(job_state.state)
# Check the state of the job every 10 seconds. Adjust time_in_seconds = <how often you want to check for job state>
def countdown(t):
while t:
mins, secs = divmod(t, 60)
timer = '{:02d}:{:02d}'.format(mins, secs)
print(timer, end="\r")
time.sleep(1)
t -= 1
job_current = client.jobs.get(resource_group, account_name, transform_name, job_name)
if(job_current.state == "Finished"):
print(job_current.state)
# TODO: Download the output file using blob storage SDK
return
if(job_current.state == "Error"):
print(job_current.state)
# TODO: Provide Error details from Job through API
return
else:
print(job_current.state)
countdown(int(time_in_seconds))
time_in_seconds = 10
countdown(int(time_in_seconds))
print(f"Creating locator for streaming...")
# Publish the output asset for streaming via HLS or DASH
locator_name = f"locator-{uniqueness}"
# Create the Asset filters
print("Creating an asset filter...")
asset_filter_name = 'filter1'
# Create the asset filter
asset_filter = client.asset_filters.create_or_update(
resource_group_name=resource_group,
account_name=account_name,
asset_name=out_asset_name,
filter_name=asset_filter_name,
parameters=AssetFilter(
# In this sample, we are going to filter the manifest by the time range of the presentation using the default timescale.
# You can adjust these settings for your own needs. Not that you can also control output tracks, and quality levels with a filter.
tracks=[],
# start_timestamp = 100000000 and end_timestamp = 300000000 using the default timescale will generate
# a play-list that contains fragments from between 10 seconds and 30 seconds of the VoD presentation.
# If a fragment straddles the boundary, the entire fragment will be included in the manifest.
presentation_time_range=PresentationTimeRange(start_timestamp=100000000, end_timestamp=300000000)
)
)
if asset_filter:
print(f"The asset filter ({asset_filter_name}) was successfully created.")
print()
else:
raise ValueError("There was an issue creating the asset filter.")
if output_asset:
streaming_locator = StreamingLocator(asset_name=out_asset_name, streaming_policy_name="Predefined_DownloadAndClearStreaming",filters=list(asset_filter_name.split(" ")))
locator = client.streaming_locators.create(
resource_group_name=resource_group,
account_name=account_name,
streaming_locator_name=locator_name,
parameters=streaming_locator
)
if locator:
print(f"The streaming locator {locator_name} was successfully created!")
else:
raise Exception(f"Error while creating streaming locator {locator_name}")
if locator.name:
hls_format = "format=m3u8-cmaf"
dash_format = "format=mpd-time-cmaf"
# Get the default streaming endpoint on the account
streaming_endpoint = client.streaming_endpoints.get(
resource_group_name=resource_group,
account_name=account_name,
streaming_endpoint_name=streaming_endpoint_name
)
if streaming_endpoint.resource_state != "Running":
print(f"Streaming endpoint is stopped. Starting endpoint named {streaming_endpoint_name}")
client.streaming_endpoints.begin_start(resource_group, account_name, streaming_endpoint_name)
basename_tup = os.path.splitext(source_file) # Extracting the filename and extension
path_extension = basename_tup[1] # Setting extension of the path
manifest_name = os.path.basename(source_file).replace(path_extension, "")
print(f"The manifest name is: {manifest_name}")
manifest_base = f"https://{streaming_endpoint.host_name}/{locator.streaming_locator_id}/{manifest_name}.ism/manifest"
hls_manifest = ""
if asset_filter_name is None:
hls_manifest = f'{manifest_base}({hls_format})'
else:
hls_manifest = f'{manifest_base}({hls_format},filter={asset_filter_name})'
print(f"The HLS (MP4) manifest URL is: {hls_manifest}")
print("Open the following URL to playback the live stream in an HLS compliant player (HLS.js, Shaka, ExoPlayer) or directly in an iOS device")
print({hls_manifest})
print()
dash_manifest = ""
if asset_filter_name is None:
dash_manifest = f'{manifest_base}({dash_format})'
else:
dash_manifest = f'{manifest_base}({dash_format},filter={asset_filter_name})'
print(f"The DASH manifest URL is: {dash_manifest}")
print("Open the following URL to playback the live stream from the LiveOutput in the Azure Media Player")
print(f"https://ampdemo.azureedge.net/?url={dash_manifest}&heuristicprofile=lowlatency")
print()
else:
raise ValueError("Locator was not created or Locator name is undefined.")
1条答案
按热度按时间kxe2p93d1#
在https://amp.azure.net/libs/amp/latest/samples/dynamic_playback_speed.html上有一个如何使用播放速度的例子,在https://github.com/Azure-Samples/azure-media-player-samples/blob/master/html/dynamic_playback_speed.html上也有。