放大器azure播放速度python

bqf10yzr  于 2022-12-24  发布在  Python
关注(0)|答案(1)|浏览(98)

我试图改变播放速度在蔚蓝色放大器。
以下是从azure apis生成的url:https://ampdemo.azureedge.net/?url=https://testingmedia-usea.streaming.media.azure.net/bbd51d47-cc1a-4515-bac8-4053040f8c58/ignite.ism/manifest(format=mpd-time-cmaf,filter=filter1)&heuristicprofile=lowlatency
如果选中该链接,则没有播放速度。
我看到下面的链接,但不知道在哪里应用Python代码https://amp.azure.net/libs/amp/latest/docs/index.html#amp.player.options.playbackspeed
下面是我的代码:

from dotenv import load_dotenv
      from azure.identity import DefaultAzureCredential
      from azure.mgmt.media import AzureMediaServices
      from azure.storage.blob import BlobServiceClient
      from azure.mgmt.media.models import (
        Asset,
        Transform,
        TransformOutput,
        BuiltInStandardEncoderPreset,
        Job,
        JobInputAsset,
        JobOutputAsset,
        OnErrorType,
        Priority,
        StreamingLocator,
        AssetFilter,
        PresentationTimeRange,
        
      )
      import os
      import random

      #Timer for checking job progress
      import time
      import requests
      #Get environment variables
      load_dotenv()

      default_credential = DefaultAzureCredential(exclude_shared_token_cache_credential=True)

      # Get the environment variables SUBSCRIPTIONID, RESOURCEGROUP and ACCOUNTNAME
      subscription_id = os.getenv('SUBSCRIPTIONID')
      resource_group = os.getenv('RESOURCEGROUP')
      account_name = os.getenv('ACCOUNTNAME')

      # The file you want to upload.  For this example, put the file in the same folder as this script. 
      # The file ignite.mp4 has been provided for you. 
      source_file = "https://testingmedia.blob.core.windows.net/data/ignite.mp4"
      #url = requests.get(source_file)

      # This is a random string that will be added to the naming of things so that you don't have to keep doing this during testing
      uniqueness = "streamAssetFilters-" + str(random.randint(0,9999))

      # Change this to your specific streaming endpoint name if not using "default"
      streaming_endpoint_name = "default"

      # Set the attributes of the input Asset using the random number
      in_asset_name = 'inputassetName' + uniqueness
      in_alternate_id = 'inputALTid' + uniqueness
      in_description = 'inputdescription' + uniqueness

      # Create an Asset object
      # The asset_id will be used for the container parameter for the storage SDK after the asset is created by the AMS client.
      in_asset = Asset(alternate_id=in_alternate_id, description=in_description)

      # Set the attributes of the output Asset using the random number
      out_asset_name = 'outputassetName' + uniqueness
      out_alternate_id = 'outputALTid' + uniqueness
      out_description = 'outputdescription' + uniqueness

      # Create an output asset object
      out_asset = Asset(alternate_id=out_alternate_id, description=out_description)

      # The AMS Client
      print("Creating AMS Client")
      client = AzureMediaServices(default_credential, subscription_id)

      # Create an input Asset
      print(f"Creating input asset {in_asset_name}")
      input_asset = client.assets.create_or_update(resource_group, account_name, in_asset_name, in_asset)

      # An AMS asset is a container with a specific id that has "asset-" prepended to the GUID.
      # So, you need to create the asset id to identify it as the container
      # where Storage is to upload the video (as a block blob)
      in_container = 'asset-' + input_asset.asset_id

      # create an output Asset
      print(f"Creating output asset {out_asset_name}")
      output_asset = client.assets.create_or_update(resource_group, account_name, out_asset_name, out_asset)

      ### Use the Storage SDK to upload the video ###
      print(f"Uploading the file {source_file}")

      blob_service_client = BlobServiceClient.from_connection_string(os.getenv('STORAGEACCOUNTCONNECTION'))
      blob_client = blob_service_client.get_blob_client(in_container, "ignite.mp4")
      # working_dir = os.getcwd() + "\Media"
      # print(working_dir)
      # print(f"Current working directory: {working_dir}")
      # upload_file_path = os.path.join(working_dir, source_file)
      # print(upload_file_path,"####")
      # WARNING: Depending on where you are launching the sample from, the path here could be off, and not include the BasicEncoding folder. 
      # Adjust the path as needed depending on how you are launching this python sample file. 

      # Upload the video to storage as a block blob
      #with open(url, "rb") as data:
      blob_client.upload_blob_from_url(source_file)

      transform_name = 'ContentAwareEncodingAssetFilters'

      # Create a new Standard encoding Transform for Built-in Copy Codec
      print(f"Creating Encoding transform named: {transform_name}")
      # For this snippet, we are using 'BuiltInStandardEncoderPreset'
      transform_output = TransformOutput(
        preset=BuiltInStandardEncoderPreset(
          preset_name="ContentAwareEncoding"
        ),
        # What should we do with the job if there is an error?
        on_error=OnErrorType.STOP_PROCESSING_JOB,
        # What is the relative priority of this job to others? Normal, high or low?
        relative_priority=Priority.NORMAL
      )

      print("Creating encoding transform...")

      # Adding transform details
      my_transform = Transform()
      my_transform.description="Transform with Asset filters"
      my_transform.outputs = [transform_output]

      print(f"Creating transform {transform_name}")
      transform = client.transforms.create_or_update(
        resource_group_name=resource_group,
        account_name=account_name,
        transform_name=transform_name,
        parameters=my_transform)

      print(f"{transform_name} created (or updated if it existed already). ")

      job_name = 'ContentAwareEncodingAssetFilters'+ uniqueness
      print(f"Creating custom encoding job {job_name}")
      files = (source_file)

      # Create Job Input and Ouput Assets
      input = JobInputAsset(asset_name=in_asset_name)
      outputs = JobOutputAsset(asset_name=out_asset_name)

      # Create the job object and then create transform job
      the_job = Job(input=input, outputs=[outputs])
      job: Job = client.jobs.create(resource_group, account_name, transform_name, job_name, parameters=the_job)

      # Check job state
      job_state = client.jobs.get(resource_group, account_name, transform_name, job_name)
      # First check
      print("First job check")
      print(job_state.state)

      # Check the state of the job every 10 seconds. Adjust time_in_seconds = <how often you want to check for job state>
      def countdown(t):
        while t: 
          mins, secs = divmod(t, 60) 
          timer = '{:02d}:{:02d}'.format(mins, secs) 
          print(timer, end="\r") 
          time.sleep(1) 
          t -= 1
        job_current = client.jobs.get(resource_group, account_name, transform_name, job_name)
        if(job_current.state == "Finished"):
          print(job_current.state)
          # TODO: Download the output file using blob storage SDK
          return
        if(job_current.state == "Error"):
          print(job_current.state)
          # TODO: Provide Error details from Job through API
          return
        else:
          print(job_current.state)
          countdown(int(time_in_seconds))

      time_in_seconds = 10
      countdown(int(time_in_seconds))

      print(f"Creating locator for streaming...")
      # Publish the output asset for streaming via HLS or DASH
      locator_name = f"locator-{uniqueness}"

      # Create the Asset filters
      print("Creating an asset filter...")
      asset_filter_name = 'filter1'

      # Create the asset filter
      asset_filter = client.asset_filters.create_or_update(
        resource_group_name=resource_group,
        account_name=account_name,
        asset_name=out_asset_name,
        filter_name=asset_filter_name,
        parameters=AssetFilter(
          # In this sample, we are going to filter the manifest by the time range of the presentation using the default timescale.
          # You can adjust these settings for your own needs. Not that you can also control output tracks, and quality levels with a filter.
          tracks=[],
          # start_timestamp = 100000000 and end_timestamp = 300000000 using the default timescale will generate
          # a play-list that contains fragments from between 10 seconds and 30 seconds of the VoD presentation.
          # If a fragment straddles the boundary, the entire fragment will be included in the manifest.
          presentation_time_range=PresentationTimeRange(start_timestamp=100000000, end_timestamp=300000000)
        )
      )

      if asset_filter:
        print(f"The asset filter ({asset_filter_name}) was successfully created.")
        print()
      else:
        raise ValueError("There was an issue creating the asset filter.")
        
      if output_asset:
        streaming_locator = StreamingLocator(asset_name=out_asset_name, streaming_policy_name="Predefined_DownloadAndClearStreaming",filters=list(asset_filter_name.split(" ")))
        locator = client.streaming_locators.create(
          resource_group_name=resource_group,
          account_name=account_name,
          streaming_locator_name=locator_name,
          parameters=streaming_locator
        )
        
        if locator:
          print(f"The streaming locator {locator_name} was successfully created!")
        else:
          raise Exception(f"Error while creating streaming locator {locator_name}")
        
        
        
        if locator.name:
          hls_format = "format=m3u8-cmaf"
          dash_format = "format=mpd-time-cmaf"
          
          # Get the default streaming endpoint on the account
          streaming_endpoint = client.streaming_endpoints.get(
            resource_group_name=resource_group,
            account_name=account_name,
            streaming_endpoint_name=streaming_endpoint_name
          )
          
          if streaming_endpoint.resource_state != "Running":
            print(f"Streaming endpoint is stopped. Starting endpoint named {streaming_endpoint_name}")
            client.streaming_endpoints.begin_start(resource_group, account_name, streaming_endpoint_name)
          
          basename_tup = os.path.splitext(source_file)    # Extracting the filename and extension
          path_extension = basename_tup[1]   # Setting extension of the path
          manifest_name = os.path.basename(source_file).replace(path_extension, "")
          print(f"The manifest name is: {manifest_name}")
          manifest_base = f"https://{streaming_endpoint.host_name}/{locator.streaming_locator_id}/{manifest_name}.ism/manifest"
          
          hls_manifest = ""
          if asset_filter_name is None:
            hls_manifest = f'{manifest_base}({hls_format})'
          else:
            hls_manifest = f'{manifest_base}({hls_format},filter={asset_filter_name})'
            
          print(f"The HLS (MP4) manifest URL is: {hls_manifest}")
          print("Open the following URL to playback the live stream in an HLS compliant player (HLS.js, Shaka, ExoPlayer) or directly in an iOS device")
          print({hls_manifest})
          print()
          
          dash_manifest = ""
          if asset_filter_name is None:
            dash_manifest = f'{manifest_base}({dash_format})'
          else:
            dash_manifest = f'{manifest_base}({dash_format},filter={asset_filter_name})'
            
          print(f"The DASH manifest URL is: {dash_manifest}")
          print("Open the following URL to playback the live stream from the LiveOutput in the Azure Media Player")
          print(f"https://ampdemo.azureedge.net/?url={dash_manifest}&heuristicprofile=lowlatency")
          print()
        else:
          raise ValueError("Locator was not created or Locator name is undefined.")

相关问题