下面是一小部分数据:
df<-read.table (text=" ID Class1a Time1a MD1a MD2a Class1b Time1b MD1b MD2b Class2a Time2a MD3a MD4a Class2b Time2b MD3b MD4b Class3a Time3a MD5a MD6a Class3b Time3b MD5b MD6b
1 1 1 1 2 2 1 1 2 9 2 2 2 10 2 1 1 17 3 2 2 18 3 1 1
2 3 1 1 1 4 1 2 1 11 2 2 1 12 2 1 1 19 3 2 1 20 3 1 1
3 5 1 2 1 6 1 2 2 13 2 1 1 14 2 2 2 21 3 1 1 22 3 2 2
4 7 1 1 1 8 1 2 2 15 2 1 1 16 2 1 1 23 3 1 1 24 3 1 1
", header=TRUE)
我希望得到以下输出,尤其是头
ID Class Time MD MD1 MD2
1 1 1 1-2 1 2
2 3 1 1-2 1 1
3 5 1 1-2 2 1
4 7 1 1-2 1 1
1 2 1 1-2 1 2
2 4 1 1-2 2 2
3 6 1 1-2 2 2
4 8 1 1-2 2 2
1 9 2 3-4 2 2
2 11 2 3-4 2 1
3 13 2 3-4 1 1
4 15 2 3-4 1 1
1 10 2 3-4 2 1
2 12 2 3-4 2 1
3 14 2 3-4 2 2
4 16 2 3-4 2 1
1 17 3 5-6 2 2
2 19 3 5-6 2 2
3 21 3 5-6 1 2
4 23 3 5-6 1 2
1 18 3 5-6 1 1
2 20 3 5-6 1 1
3 22 3 5-6 2 2
4 24 3 5-6 1 1
df1<- df %>% pivot_longer(
cols = starts_with("Time"),
names_to = "Q",
values_to = "Score",
values_drop_na = TRUE)
df2<- df1 %>% pivot_longer(
cols = starts_with("Class"),
names_prefix = "MD",
values_drop_na = TRUE
) %>% dplyr::select(-value)
但是我没有得到感兴趣的输出
1条答案
按热度按时间lb3vh1jj1#
这个答案一开始是使用
names_pattern
的pivot_longer
示例,但是尽管重命名其中一些列是有意义的,但是如何在透视过程中轻松地提取MD
列(例如1-2
、3-4
)变得不那么直观。相反,让我们按列组拆分框架,根据需要重命名列,然后
bind_rows
它们。这取决于:
ID
是第一列(因此df[,-1]
和names(df)[-1]
),以及Class*
列开始。