pandas 如何基于 Dataframe 中的类别高效地构建ngram

kb5ga3dv  于 2022-12-28  发布在  其他
关注(0)|答案(1)|浏览(93)

问题

我有一个 Dataframe ,它由属于某个类别的文本组成。现在我想得到每个类别中最常用的n元语法(示例中的二元语法)。我设法做到了这一点,但在我看来,这方面的代码太长了。

样品代码

import pandas as pd
import nltk
from nltk.tokenize import word_tokenize
from nltk.util import ngrams

# Sample data
data  = {'text':['sport sport text sample sport sport text sample', 'math math text sample math math text sample', 
'politics politics text sample politics politics text sample'],
'category' : ["sport", "math", "politics"]}
df = pd.DataFrame(data)

# Get text per category
sport = [df[df['category'] == 'sport'].reset_index()['text'].iloc[0]]
math = [df[df['category'] == 'math'].reset_index()['text'].iloc[0]]
politics = [df[df['category'] == 'politics'].reset_index()['text'].iloc[0]]

# Calculate ngrams per category
n = 2

sport_ngrams = []
for sample in sport:
  sport_ngrams.extend(ngrams(nltk.word_tokenize(sample), n))
sport_ngrams_df = pd.DataFrame(pd.Series(sport_ngrams).value_counts()[:10]).reset_index()
sport_ngrams_df['category'] = 'Business & Finance'

math_ngrams = []
for sample in math:
  math_ngrams.extend(ngrams(nltk.word_tokenize(sample), n))
math_ngrams_df = pd.DataFrame(pd.Series(math_ngrams).value_counts()[:10]).reset_index()
math_ngrams_df['category'] = 'Computers & Internet'

politics_ngrams = []
for sample in politics:
  politics_ngrams.extend(ngrams(nltk.word_tokenize(sample), n))
politics_ngrams_df = pd.DataFrame(pd.Series(politics_ngrams).value_counts()[:10]).reset_index()
politics_ngrams_df['category'] = 'Education & Reference'

# Concatenate df's
bigram_df = pd.concat([sport_ngrams_df, math_ngrams_df, politics_ngrams_df
                       ]).rename(columns={"index": "word", 0:'count'})

bigram_df
    • 产出**

| 字|计数|范畴|
| - ------| - ------| - ------|
| ("运动","运动")|第二章|商业与金融|
| ("体育"、"文字")|第二章|商业与金融|
| ('文本','示例')|第二章|商业与金融|
| ("样品"、"运动")|1个|商业与金融|
| ("数学","数学")|第二章|计算机和互联网|
| ("数学","文本")|第二章|计算机和互联网|
| ('文本','示例')|第二章|计算机和互联网|
| ("样本"、"数学")|1个|计算机和互联网|
| ("政治","政治")|第二章|教育与参考|
| ("政"、"文")|第二章|教育与参考|
| ('文本','示例')|第二章|教育与参考|
| ("样本"、"政治")|1个|教育与参考|

问题

有没有一种更有效的方法来构建n-gram,而不必分别获取文本和为每个类别创建n-gram?
谢谢你的帮助!

mklgxw1f

mklgxw1f1#

当然,每个类别的处理过程都是相同的,所以你可以把它放在一个循环中:

import pandas as pd
import nltk
from nltk.tokenize import word_tokenize
from nltk.util import ngrams

# Sample data
data  = {'text':['sport sport text sample sport sport text sample', 'math math text sample math math text sample', 
'politics politics text sample politics politics text sample'],
'category' : ["sport", "math", "politics"]}
df = pd.DataFrame(data)

n = 2
bigram_df = pd.DataFrame()

for categ in df['category']:
  text_categ = [df[df['category'] == categ].reset_index()['text'].iloc[0]]
  categ_ngrams = []
  for sample in text_categ:
    categ_ngrams.extend(ngrams(nltk.word_tokenize(sample), n))
    ngrams_df = pd.DataFrame(pd.Series(categ_ngrams).value_counts()[:10]).reset_index()
    ngrams_df['category'] = categ
    bigram_df = pd.concat([bigram_df, ngrams_df])

bigram_df

相关问题