C语言 使用 neon 内部函数转置8x8浮点矩阵

anauzrmj  于 2022-12-29  发布在  其他
关注(0)|答案(2)|浏览(177)

我有一个程序,需要对8x8 float 32矩阵运行转置操作很多次。我想使用 neon SIMD内部函数转置这些矩阵。我知道数组总是包含8x8浮点元素。我有一个基线非内部解决方案如下:

void transpose(float *matrix, float *matrixT) {
    for (int i = 0; i < 8; i++) {
        for (int j = 0; j < 8; j++) {
            matrixT[i*8+j] = matrix[j*8+i];
        }
    }
}

我还创建了一个内在解,它可以转置8x8矩阵的每个4x 4象限,并交换第二象限和第三象限的位置。

void transpose_4x4(float *matrix, float *matrixT, int store_index) {
    float32x4_t r0, r1, r2, r3, c0, c1, c2, c3;
    r0 = vld1q_f32(matrix);
    r1 = vld1q_f32(matrix + 8);
    r2 = vld1q_f32(matrix + 16);
    r3 = vld1q_f32(matrix + 24);

    c0 = vzip1q_f32(r0, r1);
    c1 = vzip2q_f32(r0, r1);
    c2 = vzip1q_f32(r2, r3);
    c3 = vzip2q_f32(r2, r3);

    r0 = vcombine_f32(vget_low_f32(c0), vget_low_f32(c2));
    r1 = vcombine_f32(vget_high_f32(c0), vget_high_f32(c2));
    r2 = vcombine_f32(vget_low_f32(c1), vget_low_f32(c3));
    r3 = vcombine_f32(vget_high_f32(c1), vget_high_f32(c3));

    vst1q_f32(matrixT + store_index, r0);
    vst1q_f32(matrixT + store_index + 8, r1);
    vst1q_f32(matrixT + store_index + 16, r2);
    vst1q_f32(matrixT + store_index + 24, r3);
}

void transpose(float *matrix, float *matrixT) {
    // Transpose top-left 4x4 quadrant and store the result in the top-left 4x4 quadrant
    transpose_4x4(matrix, matrixT, 0);

    // Transpose top-right 4x4 quadrant and store the result in the bottom-left 4x4 quadrant
    transpose_4x4(matrix + 4, matrixT, 32);

    // Transpose bottom-left 4x4 quadrant and store the result in the top-right 4x4 quadrant
    transpose_4x4(matrix + 32, matrixT, 4);

    // Transpose bottom-right 4x4 quadrant and store the result in the bottom-right 4x4 quadrant
    transpose_4x4(matrix + 36, matrixT, 36);
}

然而,这个解决方案比基准非内在解决方案的性能要慢。我正在努力寻找一个更快的解决方案,如果有的话,可以转置我的8x8矩阵。任何帮助都将不胜感激!
编辑:两个解决方案都使用-O 1标志编译。

tkclm6bt

tkclm6bt1#

首先,您不应该期望从以下方面开始就能获得巨大的性能提升:

  • 实际上没有计算
  • 您处理的是32位数据,因此没有太多的带宽限制。

总而言之,通过矢量化只节省了一点点带宽-仅此而已
至于4x 4转置,您甚至不需要单独的函数,只需一个宏即可:

#define TRANSPOSE4x4(pSrc,pDst) vst1q_f32_x4(pDst,vld4q_f32(pSrc))

将完成这项工作,因为当您使用vld4加载数据时, neon 会动态执行4x 4转置。
但此时你应该问问自己,如果4x 4转置几乎不花费任何成本,那么你的方法--在实际计算之前转置所有矩阵--是否是正确的。这一步最终可能纯粹是浪费计算和带宽。优化不应该局限于最后一步,而应该从设计阶段就开始考虑。
8x8转座是一种不同的动物,虽然:

void transpose8x8(float *pDst, float *pSrc)
    {
        float32x4_t row0a, row0b, row1a, row1b, row2a, row2b, row3a, row3b, row4a, row4b, row5a, row5b, row6a, row6b, row7a, row7b;
        float32x4_t r0a, r0b, r1a, r1b, r2a, r2b, r3a, r3b, r4a, r4b, r5a, r5b, r6a, r6b, r7a, r7b;

        row0a = vld1q_f32(pSrc);
        pSrc += 4;
        row0b = vld1q_f32(pSrc);
        pSrc += 4;
        row1a = vld1q_f32(pSrc);
        pSrc += 4;
        row1b = vld1q_f32(pSrc);
        pSrc += 4;
        row2a = vld1q_f32(pSrc);
        pSrc += 4;
        row2b = vld1q_f32(pSrc);
        pSrc += 4;
        row3a = vld1q_f32(pSrc);
        pSrc += 4;
        row3b = vld1q_f32(pSrc);
        pSrc += 4;
        row4a = vld1q_f32(pSrc);
        pSrc += 4;
        row4b = vld1q_f32(pSrc);
        pSrc += 4;
        row5a = vld1q_f32(pSrc);
        pSrc += 4;
        row5b = vld1q_f32(pSrc);
        pSrc += 4;
        row6a = vld1q_f32(pSrc);
        pSrc += 4;
        row6b = vld1q_f32(pSrc);
        pSrc += 4;
        row7a = vld1q_f32(pSrc);
        pSrc += 4;
        row7b = vld1q_f32(pSrc);

        r0a = vtrn1q_f32(row0a, row1a);
        r0b = vtrn1q_f32(row0b, row1b);
        r1a = vtrn2q_f32(row0a, row1a);
        r1b = vtrn2q_f32(row0b, row1b);
        r2a = vtrn1q_f32(row2a, row3a);
        r2b = vtrn1q_f32(row2b, row3b);
        r3a = vtrn2q_f32(row2a, row3a);
        r3b = vtrn2q_f32(row2b, row3b);
        r4a = vtrn1q_f32(row4a, row5a);
        r4b = vtrn1q_f32(row4b, row5b);
        r5a = vtrn2q_f32(row4a, row5a);
        r5b = vtrn2q_f32(row4b, row5b);
        r6a = vtrn1q_f32(row6a, row7a);
        r6b = vtrn1q_f32(row6b, row7b);
        r7a = vtrn2q_f32(row6a, row7a);
        r7b = vtrn2q_f32(row6b, row7b);

        row0a = vtrn1q_f64(row0a, row2a);
        row0b = vtrn1q_f64(row0b, row2b);
        row1a = vtrn1q_f64(row1a, row3a);
        row1b = vtrn1q_f64(row1b, row3b);
        row2a = vtrn2q_f64(row0a, row2a);
        row2b = vtrn2q_f64(row0b, row2b);
        row3a = vtrn2q_f64(row1a, row3a);
        row3b = vtrn2q_f64(row1b, row3b);
        row4a = vtrn1q_f64(row4a, row6a);
        row4b = vtrn1q_f64(row4b, row6b);
        row5a = vtrn1q_f64(row5a, row7a);
        row5b = vtrn1q_f64(row5b, row7b);
        row6a = vtrn2q_f64(row4a, row6a);
        row6b = vtrn2q_f64(row4b, row6b);
        row7a = vtrn2q_f64(row5a, row7a);
        row7b = vtrn2q_f64(row5b, row7b);

        vst1q_f32(pDst, row0a);
        pDst += 4;
        vst1q_f32(pDst, row4a);
        pDst += 4;
        vst1q_f32(pDst, row1a);
        pDst += 4;
        vst1q_f32(pDst, row5a);
        pDst += 4;
        vst1q_f32(pDst, row2a);
        pDst += 4;
        vst1q_f32(pDst, row6a);
        pDst += 4;
        vst1q_f32(pDst, row3a);
        pDst += 4;
        vst1q_f32(pDst, row7a);
        pDst += 4;
        vst1q_f32(pDst, row0b);
        pDst += 4;
        vst1q_f32(pDst, row4b);
        pDst += 4;
        vst1q_f32(pDst, row1b);
        pDst += 4;
        vst1q_f32(pDst, row5b);
        pDst += 4;
        vst1q_f32(pDst, row2b);
        pDst += 4;
        vst1q_f32(pDst, row6b);
        pDst += 4;
        vst1q_f32(pDst, row3b);
        pDst += 4;
        vst1q_f32(pDst, row7b);

    }

它可以归结为:16加载+ 32事务+ 16存储与64加载+ 64存储
现在我们可以清楚地看到这真的不值得。上面的 neon 灯例程可能会快一点,但我怀疑它最终会有什么不同。
不,你不能再优化它了。没有人能。只要确保指针是64字节对齐的,测试一下,然后自己决定。

ld1     {v0.4s-v3.4s}, [x1], #64
ld1     {v4.4s-v7.4s}, [x1], #64
ld1     {v16.4s-v19.4s}, [x1], #64
ld1     {v20.4s-v23.4s}, [x1]

trn1    v24.4s, v0.4s, v2.4s    // row0
trn1    v25.4s, v1.4s, v3.4s
trn2    v26.4s, v0.4s, v2.4s    // row1
trn2    v27.4s, v1.4s, v3.4s
trn1    v28.4s, v4.4s, v6.4s    // row2
trn1    v29.4s, v5.4s, v7.4s
trn2    v30.4s, v4.4s, v6.4s    // row3
trn2    v31.4s, v5.4s, v7.4s
trn1    v0.4s, v16.4s, v18.4s   // row4
trn1    v1.4s, v17.4s, v19.4s
trn2    v2.4s, v16.4s, v18.4s   // row5
trn2    v3.4s, v17.4s, v19.4s
trn1    v4.4s, v20.4s, v22.4s   // row6
trn1    v5.4s, v21.4s, v23.4s
trn2    v6.4s, v20.4s, v22.4s   // row7
trn2    v7.4s, v21.4s, v23.4s

trn1    v16.2d, v24.2d, v28.2d  // row0a
trn1    v17.2d, v0.2d, v4.2d    // row0b
trn1    v18.2d, v26.2d, v30.2d  // row1a
trn1    v19.2d, v2.2d, v6.2d    // row1b
trn2    v20.2d, v24.2d, v28.2d  // row2a
trn2    v21.2d, v0.2d, v4.2d    // row2b
trn2    v22.2d, v26.2d, v30.2d  // row3a
trn2    v23.2d, v2.2d, v6.2d    // row3b

st1     {v16.4s-v19.4s}, [x0], #64
st1     {v20.4s-v23.4s}, [x0], #64

trn1    v16.2d, v25.2d, v29.2d  // row4a
trn1    v17.2d, v1.2d, v5.2d    // row4b
trn1    v18.2d, v27.2d, v31.2d  // row5a
trn1    v19.2d, v3.2d, v7.2d    // row5b
trn2    v20.2d, v25.2d, v29.2d  // row4a
trn2    v21.2d, v1.2d, v5.2d    // row4b
trn2    v22.2d, v27.2d, v31.2d  // row5a
trn2    v23.2d, v3.2d, v7.2d    // row5b

st1     {v16.4s-v19.4s}, [x0], #64
st1     {v20.4s-v23.4s}, [x0]

ret

上面是手工优化的汇编版本,它很可能更短(尽可能短),但并不完全有意义地快于:
下面是我想要的纯C版本:

void transpose8x8(float *pDst, float *pSrc)
{
    uint32_t i = 8;
    do {
        pDst[0] = *pSrc++;
        pDst[8] = *pSrc++;
        pDst[16] = *pSrc++;
        pDst[24] = *pSrc++;
        pDst[32] = *pSrc++;
        pDst[40] = *pSrc++;
        pDst[48] = *pSrc++;
        pDst[56] = *pSrc++;
        pDst++;            
    } while (--i);
}

void transpose8x8(float *pDst, float *pSrc)
{
    uint32_t i = 8;
    do {
        *pDst++ = pSrc[0];
        *pDst++ = pSrc[8];
        *pDst++ = pSrc[16];
        *pDst++ = pSrc[24];
        *pDst++ = pSrc[32];
        *pDst++ = pSrc[40];
        *pDst++ = pSrc[48];
        *pDst++ = pSrc[56];
        pSrc++;
    } while (--i);
}

PS:如果你声明pDstpSrcuint32_t *,可能会带来一些性能/功耗上的增益,因为编译器肯定会生成纯整数机器码,它有各种各样的寻址模式,并且只使用w寄存器而不是s寄存器。
PS2:Clang已经使用了w寄存器而不是s寄存器,而GCC正在被GCC...... GNU-shills什么时候才能最终承认GCC对ARM来说是一个非常糟糕的选择?
godbolt
PS3:下面是汇编中的非霓虹灯版本(零延迟),因为我对上面的Clang和GCC都非常失望(甚至震惊):

.arch armv8-a
    .global transpose8x8
    .text

.balign 64
.func
transpose8x8:
    mov     w10, #8
    sub     x0, x0, #8
.balign 16
1:
    ldr     w2, [x1, #0]
    ldr     w3, [x1, #32]
    ldr     w4, [x1, #64]
    ldr     w5, [x1, #96]
    ldr     w6, [x1, #128]
    ldr     w7, [x1, #160]
    ldr     w8, [x1, #192]
    ldr     w9, [x1, #224]
    subs    w10, w10, #1
    stp     w2, w3, [x0, #8]
    add     x1, x1, #4
    stp     w4, w5, [x0, #16]
    stp     w6, w7, [x0, #24]
    stp     w8, w9, [x0, #32]!
    b.ne    1b
.balign 16
    ret
.endfunc
.end

如果你仍然坚持做纯8x8转置,这可能是你能得到的最好的版本,它可能比 neon 汇编版本慢一点,但消耗的能量要少得多。

8ehkhllq

8ehkhllq2#

可以优化在另一个答案中呈现的8x8 neon 代码; 8x8转置不仅可以被认为是[A B;C D]' == [A' C'; B' D']的递归版本,而且可以被认为是zip或unzip的重复应用。

a b c d  
  e f g h 
  i j k l
  m n o p  == a b c d e f g h i j k l m n o p

  zip(first_half, last_half) ==
  zip(...) == a i b j c k d l e m f n g o h p
  zip(...) == a e i m b f j n c g k o d h l p == transpose

对于8x8矩阵,我们需要应用此算法3次,并通过vld 4阅读数据,其中两次已经完成。

float32x4x4_t d0 = vld4q_f32(input);
   float32x4x4_t d1 = vld4q_f32(input + 16);
   float32x4x4_t d2 = vld4q_f32(input + 32);
   float32x4x4_t d3 = vld4q_f32(input + 48);
   float32x4x4_t e0 = {
       vzipq_f32(d0.val[0], d2.val[0]).val[0],
       vzipq_f32(d0.val[1], d2.val[1]).val[0],
       vzipq_f32(d0.val[2], d2.val[2]).val[0],
       vzipq_f32(d0.val[3], d2.val[3]).val[0]
   };
   float32x4x4_t e1 = {
       vzipq_f32(d1.val[0], d3.val[0]).val[0],
       vzipq_f32(d1.val[1], d3.val[1]).val[0],
       vzipq_f32(d1.val[2], d3.val[2]).val[0],
       vzipq_f32(d1.val[3], d3.val[3]).val[0]
   };
   float32x4x4_t e2 = {
       vzipq_f32(d0.val[0], d2.val[0]).val[1],
       vzipq_f32(d0.val[1], d2.val[1]).val[1],
       vzipq_f32(d0.val[2], d2.val[2]).val[1],
       vzipq_f32(d0.val[3], d2.val[3]).val[1]
   };
   float32x4x4_t e3 = {
       vzipq_f32(d1.val[0], d3.val[0]).val[1],
       vzipq_f32(d1.val[1], d3.val[1]).val[1],
       vzipq_f32(d1.val[2], d3.val[2]).val[1],
       vzipq_f32(d1.val[3], d3.val[3]).val[1]
   };
   vst1q_f32_x4(output, e0);
   vst1q_f32_x4(output + 16, e1);
   vst1q_f32_x4(output + 32, e2);
   vst1q_f32_x4(output + 48, e3);

应该也能够通过从vld1q_f32_x4开始,然后uzpq并以vst4q_f32结束来执行转置。

相关问题