python-3.x 如何将现有变压器模型代码的NER培训从v2更新为SpaCy v3.x

jm81lzqq  于 2022-12-30  发布在  Python
关注(0)|答案(1)|浏览(166)

我想了解如何从SpaCy v3.x的2.x版本更新NER更新模型学习识别新实体(这里是ANIMAL)的使用示例:
https://github.com/explosion/spaCy/blob/v2.3.x/examples/training/train_new_entity_type.py

LABEL = "ANIMAL"

# training data

TRAIN_DATA = [
    (
        "Horses are too tall and they pretend to care about your feelings",
        {"entities": [(0, 6, LABEL)]},
    ),
    ("Do they bite?", {"entities": []}),
    (
        "horses are too tall and they pretend to care about your feelings",
        {"entities": [(0, 6, LABEL)]},
    ),
    ("horses pretend to care about your feelings", {"entities": [(0, 6, LABEL)]}),
    (
        "they pretend to care about your feelings, those horses",
        {"entities": [(48, 54, LABEL)]},
    ),
    ("horses?", {"entities": [(0, 6, LABEL)]}),
]

@plac.annotations(
    model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
    new_model_name=("New model name for model meta.", "option", "nm", str),
    output_dir=("Optional output directory", "option", "o", Path),
    n_iter=("Number of training iterations", "option", "n", int),
)
def main(model=None, new_model_name="animal", output_dir=None, n_iter=30):
    """Set up the pipeline and entity recognizer, and train the new entity."""
    random.seed(0)
    if model is not None:
        nlp = spacy.load(model)  # load existing spaCy model
        print("Loaded model '%s'" % model)
    else:
        nlp = spacy.blank("en")  # create blank Language class
        print("Created blank 'en' model")
    # Add entity recognizer to model if it's not in the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    if "ner" not in nlp.pipe_names:
        ner = nlp.create_pipe("ner")
        nlp.add_pipe(ner)
    # otherwise, get it, so we can add labels to it
    else:
        ner = nlp.get_pipe("ner")

    ner.add_label(LABEL)  # add new entity label to entity recognizer
    # Adding extraneous labels shouldn't mess anything up
    ner.add_label("VEGETABLE")
    if model is None:
        optimizer = nlp.begin_training()
    else:
        optimizer = nlp.resume_training()
    move_names = list(ner.move_names)
    # get names of other pipes to disable them during training
    pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"]
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
    # only train NER
    with nlp.disable_pipes(*other_pipes), warnings.catch_warnings():
        # show warnings for misaligned entity spans once
        warnings.filterwarnings("once", category=UserWarning, module='spacy')

        sizes = compounding(1.0, 4.0, 1.001)
        # batch up the examples using spaCy's minibatch
        for itn in range(n_iter):
            random.shuffle(TRAIN_DATA)
            batches = minibatch(TRAIN_DATA, size=sizes)
            losses = {}
            for batch in batches:
                texts, annotations = zip(*batch)
                nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses)
            print("Losses", losses)

    # test the trained model
    test_text = "Do you like horses?"
    doc = nlp(test_text)
    print("Entities in '%s'" % test_text)
    for ent in doc.ents:
        print(ent.label_, ent.text)

    # save model to output directory
    if output_dir is not None:
        output_dir = Path(output_dir)
        if not output_dir.exists():
            output_dir.mkdir()
        nlp.meta["name"] = new_model_name  # rename model
        nlp.to_disk(output_dir)
        print("Saved model to", output_dir)

        # test the saved model
        print("Loading from", output_dir)
        nlp2 = spacy.load(output_dir)
        # Check the classes have loaded back consistently
        assert nlp2.get_pipe("ner").move_names == move_names
        doc2 = nlp2(test_text)
        for ent in doc2.ents:
        print(ent.label_, ent.text)

这段代码在SpaCy v3中应该是什么样子的,以便它支持model=en_core_web_trf

nom7f22z

nom7f22z1#

项目库中有一个demo project for updating an NER component。在spaCy v3中,建议使用配置文件和spacy train CLI命令来进行培训,而不是编写自己的培训循环。
对于v3中这样的更新,在transformer和non-transformer管道之间如何配置培训没有区别,因为transformer不再需要像您发布的示例中那样的额外组件。
注意,通常不建议更新预训练的NER组件,因为这很容易导致灾难性的遗忘。在文档中概述的标准训练过程中,预训练的转换器被用作特征源,因此尽管NER层是从头开始的,但实际上您并不是从零开始。

相关问题