Version
5.22
Link to Minimal Reproduction
https://codesandbox.io/s/objective-ritchie-9o0o2?file=/src/index.js
Steps to Reproduce
import * as echarts from "echarts";
var chartDom = document.getElementById("app");
var myChart = echarts.init(chartDom, null, {
useDirtyRect: true
});
var option;
var noise = getNoiseHelper();
var xData = [];
var yData = [];
noise.seed(Math.random());
function generateData(theta, min, max) {
var data = [];
for (var i = 0; i <= 200; i++) {
for (var j = 0; j <= 100; j++) {
// var x = (max - min) * i / 200 + min;
// var y = (max - min) * j / 100 + min;
data.push([i, j, noise.perlin2(i / 40, j / 20) + 0.5]);
// data.push([i, j, normalDist(theta, x) * normalDist(theta, y)]);
}
xData.push(i);
}
for (var j = 0; j < 100; j++) {
yData.push(j);
}
return data;
}
var data = generateData(2, -5, 5);
option = {
tooltip: {},
xAxis: {
type: "category",
data: xData
},
yAxis: {
type: "category",
data: yData
},
visualMap: {
min: 0,
max: 1,
calculable: true,
realtime: false,
inRange: {
color: [
"#313695",
"#4575b4",
"#74add1",
"#abd9e9",
"#e0f3f8",
"#ffffbf",
"#fee090",
"#fdae61",
"#f46d43",
"#d73027",
"#a50026"
]
}
},
series: [
{
name: "Gaussian",
type: "heatmap",
data: data,
emphasis: {
itemStyle: {
borderColor: "#333",
borderWidth: 1
}
},
progressive: 1000,
animation: false
}
]
};
///////////////////////////////////////////////////////////////////////////
// Simplex and perlin noise helper from https://github.com/josephg/noisejs
///////////////////////////////////////////////////////////////////////////
function getNoiseHelper(global) {
var module = {};
function Grad(x, y, z) {
this.x = x;
this.y = y;
this.z = z;
}
Grad.prototype.dot2 = function (x, y) {
return this.x * x + this.y * y;
};
Grad.prototype.dot3 = function (x, y, z) {
return this.x * x + this.y * y + this.z * z;
};
var grad3 = [
new Grad(1, 1, 0),
new Grad(-1, 1, 0),
new Grad(1, -1, 0),
new Grad(-1, -1, 0),
new Grad(1, 0, 1),
new Grad(-1, 0, 1),
new Grad(1, 0, -1),
new Grad(-1, 0, -1),
new Grad(0, 1, 1),
new Grad(0, -1, 1),
new Grad(0, 1, -1),
new Grad(0, -1, -1)
];
var p = [
151,
160,
137,
91,
90,
15,
131,
13,
201,
95,
96,
53,
194,
233,
7,
225,
140,
36,
103,
30,
69,
142,
8,
99,
37,
240,
21,
10,
23,
190,
6,
148,
247,
120,
234,
75,
0,
26,
197,
62,
94,
252,
219,
203,
117,
35,
11,
32,
57,
177,
33,
88,
237,
149,
56,
87,
174,
20,
125,
136,
171,
168,
68,
175,
74,
165,
71,
134,
139,
48,
27,
166,
77,
146,
158,
231,
83,
111,
229,
122,
60,
211,
133,
230,
220,
105,
92,
41,
55,
46,
245,
40,
244,
102,
143,
54,
65,
25,
63,
161,
1,
216,
80,
73,
209,
76,
132,
187,
208,
89,
18,
169,
200,
196,
135,
130,
116,
188,
159,
86,
164,
100,
109,
198,
173,
186,
3,
64,
52,
217,
226,
250,
124,
123,
5,
202,
38,
147,
118,
126,
255,
82,
85,
212,
207,
206,
59,
227,
47,
16,
58,
17,
182,
189,
28,
42,
223,
183,
170,
213,
119,
248,
152,
2,
44,
154,
163,
70,
221,
153,
101,
155,
167,
43,
172,
9,
129,
22,
39,
253,
19,
98,
108,
110,
79,
113,
224,
232,
178,
185,
112,
104,
218,
246,
97,
228,
251,
34,
242,
193,
238,
210,
144,
12,
191,
179,
162,
241,
81,
51,
145,
235,
249,
14,
239,
107,
49,
192,
214,
31,
181,
199,
106,
157,
184,
84,
204,
176,
115,
121,
50,
45,
127,
4,
150,
254,
138,
236,
205,
93,
222,
114,
67,
29,
24,
72,
243,
141,
128,
195,
78,
66,
215,
61,
156,
180
];
// To remove the need for index wrapping, double the permutation table length
var perm = new Array(512);
var gradP = new Array(512);
// This isn't a very good seeding function, but it works ok. It supports 2^16
// different seed values. Write something better if you need more seeds.
module.seed = function (seed) {
if (seed > 0 && seed < 1) {
// Scale the seed out
seed *= 65536;
}
seed = Math.floor(seed);
if (seed < 256) {
seed |= seed << 8;
}
for (var i = 0; i < 256; i++) {
var v;
if (i & 1) {
v = p[i] ^ (seed & 255);
} else {
v = p[i] ^ ((seed >> 8) & 255);
}
perm[i] = perm[i + 256] = v;
gradP[i] = gradP[i + 256] = grad3[v % 12];
}
};
module.seed(0);
/*
for(var i=0; i<256; i++) {
perm[i] = perm[i + 256] = p[i];
gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
}*/
// Skewing and unskewing factors for 2, 3, and 4 dimensions
var F2 = 0.5 * (Math.sqrt(3) - 1);
var G2 = (3 - Math.sqrt(3)) / 6;
var F3 = 1 / 3;
var G3 = 1 / 6;
// 2D simplex noise
module.simplex2 = function (xin, yin) {
var n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin) * F2; // Hairy factor for 2D
var i = Math.floor(xin + s);
var j = Math.floor(yin + s);
var t = (i + j) * G2;
var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed.
var y0 = yin - j + t;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
// lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1;
j1 = 0;
} else {
// upper triangle, YX order: (0,0)->(0,1)->(1,1)
i1 = 0;
j1 = 1;
}
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2;
var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1 + 2 * G2;
// Work out the hashed gradient indices of the three simplex corners
i &= 255;
j &= 255;
var gi0 = gradP[i + perm[j]];
var gi1 = gradP[i + i1 + perm[j + j1]];
var gi2 = gradP[i + 1 + perm[j + 1]];
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 < 0) {
n0 = 0;
} else {
t0 *= t0;
n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 < 0) {
n1 = 0;
} else {
t1 *= t1;
n1 = t1 * t1 * gi1.dot2(x1, y1);
}
var t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 < 0) {
n2 = 0;
} else {
t2 *= t2;
n2 = t2 * t2 * gi2.dot2(x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70 * (n0 + n1 + n2);
};
// 3D simplex noise
module.simplex3 = function (xin, yin, zin) {
var n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin + zin) * F3; // Hairy factor for 2D
var i = Math.floor(xin + s);
var j = Math.floor(yin + s);
var k = Math.floor(zin + s);
var t = (i + j + k) * G3;
var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed.
var y0 = yin - j + t;
var z0 = zin - k + t;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
} else {
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
var x1 = x0 - i1 + G3; // Offsets for second corner
var y1 = y0 - j1 + G3;
var z1 = z0 - k1 + G3;
var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
var y2 = y0 - j2 + 2 * G3;
var z2 = z0 - k2 + 2 * G3;
var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
var y3 = y0 - 1 + 3 * G3;
var z3 = z0 - 1 + 3 * G3;
// Work out the hashed gradient indices of the four simplex corners
i &= 255;
j &= 255;
k &= 255;
var gi0 = gradP[i + perm[j + perm[k]]];
var gi1 = gradP[i + i1 + perm[j + j1 + perm[k + k1]]];
var gi2 = gradP[i + i2 + perm[j + j2 + perm[k + k2]]];
var gi3 = gradP[i + 1 + perm[j + 1 + perm[k + 1]]];
// Calculate the contribution from the four corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) {
n0 = 0;
} else {
t0 *= t0;
n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) {
n1 = 0;
} else {
t1 *= t1;
n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) {
n2 = 0;
} else {
t2 *= t2;
n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) {
n3 = 0;
} else {
t3 *= t3;
n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 32 * (n0 + n1 + n2 + n3);
};
// ##### Perlin noise stuff
function fade(t) {
return t * t * t * (t * (t * 6 - 15) + 10);
}
function lerp(a, b, t) {
return (1 - t) * a + t * b;
}
// 2D Perlin Noise
module.perlin2 = function (x, y) {
// Find unit grid cell containing point
var X = Math.floor(x),
Y = Math.floor(y);
// Get relative xy coordinates of point within that cell
x = x - X;
y = y - Y;
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
X = X & 255;
Y = Y & 255;
// Calculate noise contributions from each of the four corners
var n00 = gradP[X + perm[Y]].dot2(x, y);
var n01 = gradP[X + perm[Y + 1]].dot2(x, y - 1);
var n10 = gradP[X + 1 + perm[Y]].dot2(x - 1, y);
var n11 = gradP[X + 1 + perm[Y + 1]].dot2(x - 1, y - 1);
// Compute the fade curve value for x
var u = fade(x);
// Interpolate the four results
return lerp(lerp(n00, n10, u), lerp(n01, n11, u), fade(y));
};
// 3D Perlin Noise
module.perlin3 = function (x, y, z) {
// Find unit grid cell containing point
var X = Math.floor(x),
Y = Math.floor(y),
Z = Math.floor(z);
// Get relative xyz coordinates of point within that cell
x = x - X;
y = y - Y;
z = z - Z;
// Wrap the integer cells at 255 (smaller integer period can be introduced here)
X = X & 255;
Y = Y & 255;
Z = Z & 255;
// Calculate noise contributions from each of the eight corners
var n000 = gradP[X + perm[Y + perm[Z]]].dot3(x, y, z);
var n001 = gradP[X + perm[Y + perm[Z + 1]]].dot3(x, y, z - 1);
var n010 = gradP[X + perm[Y + 1 + perm[Z]]].dot3(x, y - 1, z);
var n011 = gradP[X + perm[Y + 1 + perm[Z + 1]]].dot3(x, y - 1, z - 1);
var n100 = gradP[X + 1 + perm[Y + perm[Z]]].dot3(x - 1, y, z);
var n101 = gradP[X + 1 + perm[Y + perm[Z + 1]]].dot3(x - 1, y, z - 1);
var n110 = gradP[X + 1 + perm[Y + 1 + perm[Z]]].dot3(x - 1, y - 1, z);
var n111 = gradP[X + 1 + perm[Y + 1 + perm[Z + 1]]].dot3(
x - 1,
y - 1,
z - 1
);
// Compute the fade curve value for x, y, z
var u = fade(x);
var v = fade(y);
var w = fade(z);
// Interpolate
return lerp(
lerp(lerp(n000, n100, u), lerp(n001, n101, u), w),
lerp(lerp(n010, n110, u), lerp(n011, n111, u), w),
v
);
};
return module;
}
option && myChart.setOption(option);
setInterval(function () {
for (var i = 0; i < 5; i++) {
data.shift();
}
myChart.setOption({
series: [
{
data: data
}
]
});
}, 1000);
Current Behavior
当前使用setOption改变data后,图形整体重新刷新了一遍
Expected Behavior
使用setOption改变data后,图形不会整体全部刷新,而是数据变化的局部发生改变
Environment
- OS: macOS BigSur 11.4 (20F71)
- Browser: 96.0.4664.93
- Framework: Vue@3
Any additional comments?
No response
6条答案
按热度按时间gkn4icbw1#
@CodeFly16 It seems you are not using English, I've helped translate the content automatically. To make your issue understood by more people and get helped, we'd like to suggest using English next time. 🤗
TRANSLATED
TITLE
Heat map Use setOption to change data, can not achieve local refresh [Bug]
ljsrvy3e2#
init 的时候 useDirtyRect 设为 true 开启脏矩形渲染,参见 https://echarts.apache.org/zh/api.html#echarts
lhcgjxsq3#
init 的时候 useDirtyRect 设为 true 开启脏矩形渲染,参见 https://echarts.apache.org/zh/api.html#echarts
这里添加useDirtyRect还是会出现刷新情况
dzhpxtsq4#
这是因为
series.progressive
不为 0 的情况下开启了渐进式渲染,所有数据又刷掉了。所以应该把这个配置项设为 0 后配合脏矩形。q8l4jmvw5#
说错了,setOption 的时候总是会全部刷新的,那这个问题无解了
vsikbqxv6#
说错了,setOption 的时候总是会全部刷新的,那这个问题无解了
感谢回复,我刚刚将series.progressive设置为0,有一定的效果,我下去在试一试