我已经在tensorflow 训练模型如下:
batch_size = 128
graph = tf.Graph()
with graph.as_default():
# Input data. For the training data, we use a placeholder that will be fed
# at run time with a training minibatch.
tf_train_dataset = tf.placeholder(tf.float32,
shape=(batch_size, image_size * image_size))
tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
# Variables.
weights = tf.Variable(
tf.truncated_normal([image_size * image_size, num_labels]))
biases = tf.Variable(tf.zeros([num_labels]))
# Training computation.
logits = tf.matmul(tf_train_dataset, weights) + biases
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits))
# Optimizer.
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
# Predictions for the training, validation, and test data.
train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(
tf.matmul(tf_valid_dataset, weights) + biases)
test_prediction = tf.nn.softmax(tf.matmul(tf_test_dataset, weights) + biases)
num_steps = 3001
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
print("Initialized")
for step in range(num_steps):
# Pick an offset within the training data, which has been randomized.
# Note: we could use better randomization across epochs.
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
# Generate a minibatch.
batch_data = train_dataset[offset:(offset + batch_size), :]
batch_labels = train_labels[offset:(offset + batch_size), :]
# Prepare a dictionary telling the session where to feed the minibatch.
# The key of the dictionary is the placeholder node of the graph to be fed,
# and the value is the numpy array to feed to it.
feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
_, l, predictions = session.run(
[optimizer, loss, train_prediction], feed_dict=feed_dict)
if (step % 500 == 0):
print("Minibatch loss at step %d: %f" % (step, l))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
print("Validation accuracy: %.1f%%" % accuracy(
valid_prediction.eval(), valid_labels))
print("Test accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))
现在,我想使用一个单一的图像作为输入,这是要重塑到相同的格式作为我的训练图像,并获得预测10类的概率。这个问题已经问了很多次,我很难理解他们的解决方案,其中一个最好的答案是使用以下代码:
feed_dict = {x: [your_image]}
classification = tf.run(y, feed_dict)
print classification
在我的代码中,x和y的等价性是什么?假设我从测试数据集中选择一个图像进行预测:
img = train_dataset[678]
我期待一个概率为10的数组。
2条答案
按热度按时间ghhkc1vu1#
让我回答我自己的问题:首先,必须更改这些代码行,我们必须使用None而不是const batch size,以便稍后可以将单个图像作为输入:
在会话中,我使用以下代码向模型提供新图像:
我的图像在训练集中是2828,所以请确保您的新图像也是2828,您必须将其展平为1*784,并将其提供给您的模型,然后接收预测概率
wvt8vs2t2#
你也可以使用
tf.keras.utils.load_img
,这样你就可以导入一张图片,然后让你的模型对它进行预测。这个链接将向您显示要传入的参数及其含义:https://www.tensorflow.org/api_docs/python/tf/keras/utils/load_img
下面是一个使用它的例子。实际上,你所要做的就是从教程中更改文件路径:https://www.tensorflow.org/tutorials/images/classification#predict_on_new_data