c++ 删除std::元组的第一个类型

esyap4oy  于 2023-01-15  发布在  其他
关注(0)|答案(5)|浏览(145)

这似乎是一个很简单的问题:如何删除std::tuple中的第一个(第n个)类型?
示例:

typedef std::tuple<int, short, double> tuple1;
typedef std::tuple<short, double> tuple2;

上面描述的操作会将tuple1转换为tuple2,这可能吗?

rsl1atfo

rsl1atfo1#

可以使用基于类模板的部分专用化的简单类型函数:

#include <type_traits>
#include <tuple>

using namespace std;

template<typename T>
struct remove_first_type
{
};

template<typename T, typename... Ts>
struct remove_first_type<tuple<T, Ts...>>
{
    typedef tuple<Ts...> type;
};

int main()
{
    typedef tuple<int, bool, double> my_tuple;
    typedef remove_first_type<my_tuple>::type my_tuple_wo_first_type;

    static_assert(
        is_same<my_tuple_wo_first_type, tuple<bool, double>>::value, 
        "Error!"
        );
}

而且,该解决方案可以容易地推广为移除元组的第i个类型:

#include <type_traits>
#include <tuple>

using namespace std;

template<size_t I, typename T>
struct remove_ith_type
{
};

template<typename T, typename... Ts>
struct remove_ith_type<0, tuple<T, Ts...>>
{
    typedef tuple<Ts...> type;
};

template<size_t I, typename T, typename... Ts>
struct remove_ith_type<I, tuple<T, Ts...>>
{
    typedef decltype(
        tuple_cat(
            declval<tuple<T>>(),
            declval<typename remove_ith_type<I - 1, tuple<Ts...>>::type>()
            )
        ) type;
};

int main()
{
    typedef tuple<int, bool, double> my_tuple;
    typedef remove_ith_type<1, my_tuple>::type my_tuple_wo_2nd_type;

    static_assert(
        is_same<my_tuple_wo_2nd_type, tuple<int, double>>::value, 
        "Error!"
        );
}
tcomlyy6

tcomlyy62#

我写了一个proposal,它被C++14标准接受,这使得它很容易为任何“元组类”类型做,即支持tuple_sizetuple_element API的类型:

template<typename T, typename Seq>
    struct tuple_cdr_impl;

template<typename T, std::size_t I0, std::size_t... I>
    struct tuple_cdr_impl<T, std::index_sequence<I0, I...>>
    {
        using type = std::tuple<typename std::tuple_element<I, T>::type...>;
    };

template<typename T>
    struct tuple_cdr
    : tuple_cdr_impl<T, std::make_index_sequence<std::tuple_size<T>::value>>
    { };

而且,只需几个函数就可以将元组对象转换为新类型:

template<typename T, std::size_t I0, std::size_t... I>
typename tuple_cdr<typename std::remove_reference<T>::type>::type
cdr_impl(T&& t, std::index_sequence<I0, I...>)
{
    return std::make_tuple(std::get<I>(t)...);
}

template<typename T>
typename tuple_cdr<typename std::remove_reference<T>::type>::type
cdr(T&& t)
{
    return cdr_impl(std::forward<T>(t),
                    std::make_index_sequence<std::tuple_size<T>::value>{});
}

这将创建整数序列[0,1,2,...,N),其中Ntuple_size<T>::value,然后在[1,2,...,N)中为I创建具有make_tuple(get<I>(t)...)的新元组
测试:

using tuple1 = std::tuple<int, short, double>;
using tuple2 = std::tuple<short, double>;
using transformed = decltype(cdr(std::declval<tuple1>()));
static_assert(std::is_same<transformed, tuple2>::value, "");
static_assert(std::is_same<tuple_cdr<tuple1>::type, tuple2>::value, "");

#include <iostream>

int main()
{
    auto t = cdr(std::make_tuple(nullptr, "hello", "world"));
    std::cout << std::get<0>(t) << ", " << std::get<1>(t) << '\n';
}

我的建议书参考实现位于https://gitlab.com/redistd/integer_seq/blob/master/integer_seq.h

yvgpqqbh

yvgpqqbh3#

我提出了一个与@Andy提出的解决方案非常相似的解决方案,但是它试图通过直接处理参数包(使用一个伪 Package 器)而不是std::tuple来更通用一些,这样,该操作也可以应用于其他可变参数模板,而不仅仅是元组:

#include <type_traits>
#include <tuple>

template <typename... Args> struct pack {};

template <template <typename...> class T, typename Pack>
struct unpack;

template <template <typename...> class T, typename... Args>
struct unpack<T, pack<Args...>>
{
    typedef T<Args...> type;
};

template <typename T, typename Pack>
struct prepend;

template <typename T, typename... Args>
struct prepend<T, pack<Args...>>
{
    typedef pack<T, Args...> type;
};

template <std::size_t N, typename... Args>
struct remove_nth_type;

template <std::size_t N, typename T, typename... Ts>
struct remove_nth_type<N, T, Ts...>
    : prepend<T, typename remove_nth_type<N-1, Ts...>::type>
{};

template <typename T, typename... Ts>
struct remove_nth_type<0, T, Ts...>
{
    typedef pack<Ts...> type;
};

template <typename T, int N>
struct remove_nth;

template <template <typename...> class T, int N, typename... Args>
struct remove_nth<T<Args...>, N>
{
    typedef typename
        unpack<
            T, typename 
            remove_nth_type<N, Args...>::type
        >::type type;
};

template <typename... Args>
struct my_variadic_template
{
};

int main()
{
    typedef std::tuple<int, bool, double> my_tuple;
    typedef remove_nth<my_tuple, 1>::type my_tuple_wo_2nd_type;

    static_assert(
        is_same<my_tuple_wo_2nd_type, tuple<int, double>>::value, 
        "Error!"
        );

    typedef my_variadic_template<int, double> vt;
    typedef remove_nth<vt, 0>::type vt_wo_1st_type;

    static_assert(
        is_same<vt_wo_1st_type, my_variadic_template<double>>::value, 
        "Error!"
        );
}

pack是一个helper结构,其唯一目的是存储模板参数包。unpack然后可用于将参数解包到任意类模板(thanks to @BenVoigt for this trick)中。prepend只是将类型添加到包的前面。
remove_nth_type使用部分模板专门化从参数包中移除第n个类型,将结果存储到pack中。最后,remove_nth获取任意类模板的专门化,从其模板参数中移除第n个类型,并返回新的专门化。

2w2cym1i

2w2cym1i4#

除了那些疯狂的TMP东西,还有一种非常简单的方法来使用C++17 STL函数std::apply

#include <string>
#include <tuple>

template <class T, class... Args>
auto tail(const std::tuple<T, Args...>& t)
{
    return std::apply(
        [](const T&, const Args&... args)
        {
            return std::make_tuple(args...);
        }, t);
}
template <class T>
using tail_t = decltype(tail(T{}));
int main()
{
    std::tuple<int, double, std::string> t{1, 2., "3"};
    auto _2_3 = tail(t);
    using tuple_t = tail_t<std::tuple<int, double, std::string>>;
    static_assert(std::is_same_v<std::tuple<double, std::string>, tuple_t>);
}

DEMO.

dgjrabp2

dgjrabp25#

这是template元编程的一个过度设计的部分,它包括通过过滤器templatetuple的类型进行任意重排序/复制/删除的能力:

#include <utility>
#include <type_traits>

template<typename... Ts> struct pack {};

template<std::size_t index, typename Pack, typename=void> struct nth_type;

template<typename T0, typename... Ts>
struct nth_type<0, pack<T0, Ts...>, void> { typedef T0 type; };

template<std::size_t index, typename T0, typename... Ts>
struct nth_type<index, pack<T0, Ts...>, typename std::enable_if<(index>0)>::type>:
  nth_type<index-1, pack<Ts...>>
{};

template<std::size_t... s> struct seq {};

template<std::size_t n, std::size_t... s>
struct make_seq:make_seq<n-1, n-1, s...> {};

template<std::size_t... s>
struct make_seq<0,s...> {
  typedef seq<s...> type;
};

template<typename T, typename Pack> struct conc_pack { typedef pack<T> type; };
template<typename T, typename... Ts> struct conc_pack<T, pack<Ts...>> { typedef pack<T, Ts...> type; };

template<std::size_t n, typename Seq> struct append;
template<std::size_t n, std::size_t... s>
struct append<n, seq<s...>> {
  typedef seq<n, s...> type;
};
template<typename S0, typename S1> struct conc;
template<std::size_t... s0, std::size_t... s1>
struct conc<seq<s0...>, seq<s1...>>
{
  typedef seq<s0..., s1...> type;
};

template<typename T, typename=void> struct value_exists:std::false_type {};

template<typename T> struct value_exists<T,
  typename std::enable_if< std::is_same<decltype(T::value),decltype(T::value)>::value >::type
>:std::true_type {};

template<typename T, typename=void> struct result_exists:std::false_type {};
template<typename T> struct result_exists<T,
  typename std::enable_if< std::is_same<typename T::result,typename T::result>::value >::type
>:std::true_type {};

template<template<std::size_t>class filter, typename Seq, typename=void>
struct filter_seq { typedef seq<> type; };

template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<value_exists<filter<s0>>::value>::type>
: append< filter<s0>::value, typename filter_seq<filter, seq<s...>>::type >
{};

template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<!value_exists<filter<s0>>::value && result_exists<filter<s0>>::value>::type>
: conc< typename filter<s0>::result, typename filter_seq<filter, seq<s...>>::type >
{};

template<template<std::size_t>class filter, std::size_t s0, std::size_t... s>
struct filter_seq<filter, seq<s0, s...>, typename std::enable_if<!value_exists<filter<s0>>::value && !result_exists<filter<s0>>::value>::type>
: filter_seq<filter, seq<s...>>
{};

template<typename Seq, typename Pack>
struct remap_pack {
  typedef pack<> type;
};

template<std::size_t s0, std::size_t... s, typename Pack>
struct remap_pack< seq<s0, s...>, Pack >
{
  typedef typename conc_pack< typename nth_type<s0, Pack>::type, typename remap_pack< seq<s...>, Pack >::type >::type type;
};

template<typename Pack>
struct get_indexes { typedef seq<> type; };

template<typename... Ts>
struct get_indexes<pack<Ts...>> {
  typedef typename make_seq< sizeof...(Ts) >::type type;
};

template<std::size_t n>
struct filter_zero_out { enum{ value = n }; };

template<>
struct filter_zero_out<0> {};

template<std::size_t n>
struct filter_zero_out_b { typedef seq<n> result; };

template<>
struct filter_zero_out_b<0> { typedef seq<> result; };

#include <iostream>

int main() {
  typedef pack< int, double, char > pack1;
  typedef pack< double, char > pack2;

  typedef filter_seq< filter_zero_out, typename get_indexes<pack1>::type >::type reindex;
  typedef filter_seq< filter_zero_out_b, typename get_indexes<pack1>::type >::type reindex_b;

  typedef typename remap_pack< reindex, pack1 >::type pack2_clone;
  typedef typename remap_pack< reindex_b, pack1 >::type pack2_clone_b;

  std::cout << std::is_same< pack2, pack2_clone >::value << "\n";
  std::cout << std::is_same< pack2, pack2_clone_b >::value << "\n";
}

这里我们有一个类型pack,它包含任意类型列表,关于如何在tuplepack之间移动,请参见@LucTouraille的简洁回答。
seq保存索引序列。remap_pack获取seqpack,并通过获取原始pack的第n个元素来构建结果pack
filter_seq采用template<size_t>函子和seq,并使用该函子筛选seq的元素。该函子可以返回size_t类型的::valueseq<...>类型的::result,也可以两者都不返回,允许一对一或一对多函子。
其他一些辅助函数,如concappendconc_packget_indexesmake_seqnth_type,可以使这些功能更加完善。
我用filter_zero_outfilter_zero_out_b进行了测试,filter_zero_out是一个基于::value的过滤器,可以删除0,filter_zero_out_b是一个基于::result的过滤器,也可以删除0。

相关问题