调用函数,但代码显示C++中没有匹配的函数

v8wbuo2f  于 2023-01-18  发布在  其他
关注(0)|答案(1)|浏览(158)

这是我的代码,错误是

no matching function for call to to_reduced_row_echelon_form(float[((unsigned int)((int)r))][((unsigned int)((int)c))])'
#include <algorithm> // for std::swap
#include <cstddef>
#include <cassert>

// Matrix traits: This describes how a matrix is accessed. By
// externalizing this information into a traits class, the same code
// can be used both with native arrays and matrix classes. To use the
// default implementation of the traits class, a matrix type has to
// provide the following definitions as members:
//
// * typedef ... index_type;
//   - The type used for indexing (e.g. size_t)
// * typedef ... value_type;
//   - The element type of the matrix (e.g. double)
// * index_type min_row() const;
//   - returns the minimal allowed row index
// * index_type max_row() const;
//   - returns the maximal allowed row index
// * index_type min_column() const;
//   - returns the minimal allowed column index
// * index_type max_column() const;
//   - returns the maximal allowed column index
// * value_type& operator()(index_type i, index_type k)
//   - returns a reference to the element i,k, where
//     min_row() <= i <= max_row()
//     min_column() <= k <= max_column()
// * value_type operator()(index_type i, index_type k) const
//   - returns the value of element i,k
//
// Note that the functions are all inline and simple, so the compiler
// should completely optimize them away.
template<typename MatrixType> struct matrix_traits
{
  typedef typename MatrixType::index_type index_type;
  typedef typename MatrixType::value_type value_type;
  static index_type min_row(MatrixType const& A)
  { return A.min_row(); }
  static index_type max_row(MatrixType const& A)
  { return A.max_row(); }
  static index_type min_column(MatrixType const& A)
  { return A.min_column(); }
  static index_type max_column(MatrixType const& A)
  { return A.max_column(); }
  static value_type& element(MatrixType& A, index_type i, index_type k)
  { return A(i,k); }
  static value_type element(MatrixType const& A, index_type i, index_type k)
  { return A(i,k); }
};

// specialization of the matrix traits for built-in two-dimensional
// arrays
template<typename T, std::size_t rows, std::size_t columns>
 struct matrix_traits<T[rows][columns]>
{
  typedef std::size_t index_type;
  typedef T value_type;
  static index_type min_row(T const (&)[rows][columns])
  { return 0; }
  static index_type max_row(T const (&)[rows][columns])
  { return rows-1; }
  static index_type min_column(T const (&)[rows][columns])
  { return 0; }
  static index_type max_column(T const (&)[rows][columns])
  { return columns-1; }
  static value_type& element(T (&A)[rows][columns],
                             index_type i, index_type k)
  { return A[i][k]; }
  static value_type element(T const (&A)[rows][columns],
                            index_type i, index_type k)
  { return A[i][k]; }
};

// Swap rows i and k of a matrix A
// Note that due to the reference, both dimensions are preserved for
// built-in arrays
template<typename MatrixType>
 void swap_rows(MatrixType& A,
                 typename matrix_traits<MatrixType>::index_type i,
                 typename matrix_traits<MatrixType>::index_type k)
{
  matrix_traits<MatrixType> mt;
  typedef typename matrix_traits<MatrixType>::index_type index_type;

  // check indices
  assert(mt.min_row(A) <= i);
  assert(i <= mt.max_row(A));

  assert(mt.min_row(A) <= k);
  assert(k <= mt.max_row(A));

  for (index_type col = mt.min_column(A); col <= mt.max_column(A); ++col)
    std::swap(mt.element(A, i, col), mt.element(A, k, col));
}

// divide row i of matrix A by v
template<typename MatrixType>
 void divide_row(MatrixType& A,
                  typename matrix_traits<MatrixType>::index_type i,
                  typename matrix_traits<MatrixType>::value_type v)
{
  matrix_traits<MatrixType> mt;
  typedef typename matrix_traits<MatrixType>::index_type index_type;

  assert(mt.min_row(A) <= i);
  assert(i <= mt.max_row(A));

  assert(v != 0);

  for (index_type col = mt.min_column(A); col <= mt.max_column(A); ++col)
    mt.element(A, i, col) /= v;
}

// in matrix A, add v times row k to row i
template<typename MatrixType>
 void add_multiple_row(MatrixType& A,
                  typename matrix_traits<MatrixType>::index_type i,
                  typename matrix_traits<MatrixType>::index_type k,
                  typename matrix_traits<MatrixType>::value_type v)
{
  matrix_traits<MatrixType> mt;
  typedef typename matrix_traits<MatrixType>::index_type index_type;

  assert(mt.min_row(A) <= i);
  assert(i <= mt.max_row(A));

  assert(mt.min_row(A) <= k);
  assert(k <= mt.max_row(A));

  for (index_type col = mt.min_column(A); col <= mt.max_column(A); ++col)
    mt.element(A, i, col) += v * mt.element(A, k, col);
}

// convert A to reduced row echelon form
template<typename MatrixType>
 void to_reduced_row_echelon_form(MatrixType& A)
{
  matrix_traits<MatrixType> mt;
  typedef typename matrix_traits<MatrixType>::index_type index_type;

  index_type lead = mt.min_row(A);

  for (index_type row = mt.min_row(A); row <= mt.max_row(A); ++row)
  {
    if (lead > mt.max_column(A))
      return;
    index_type i = row;
    while (mt.element(A, i, lead) == 0)
    {
      ++i;
      if (i > mt.max_row(A))
      {
        i = row;
        ++lead;
        if (lead > mt.max_column(A))
          return;
      }
    }
    swap_rows(A, i, row);
    divide_row(A, row, mt.element(A, row, lead));
    for (i = mt.min_row(A); i <= mt.max_row(A); ++i)
    {
      if (i != row)
        add_multiple_row(A, i, row, -mt.element(A, i, lead));
    }
  }
}

// test code
#include <iostream>
#include <vector>

using namespace std;
int main()
{ 
  int r=0,c=0,i,j;
  cout << "Enter no of rows of the matrix";
  cin >> r;
  cout << "Enter no of columns of the matrix";
  cin >> c;

  float l[r][c];

  int p = 0, q = 0;

  while (p < r) {
    while (q < c) {
      
      cin >> l[p][q];

      q = q + 1;
    }
    p = p + 1;
    q = 0;
  }
  to_reduced_row_echelon_form(l);

  for (int i = 0; i < r; ++i)
  {
    for (int j = 0; j < c; ++j)
      std::cout << l[i][j] << '\t';
    std::cout << "\n";
  }
  system("pause");
  return EXIT_SUCCESS;
}

调用我从https://rosettacode.org/wiki/Reduced_row_echelon_form获取其代码的函数

uqdfh47h

uqdfh47h1#

float l[r][c];这样的可变长度数组(VLA)不是标准C++的一部分,因此任何试图推断它们何时可能工作或可能不工作的尝试都是徒劳的。
传递给to_reduced_row_echelon_form的类型的要求在“Matrix traits”开头的注解中有清楚的描述。你需要定义一个具有这些特性的类。

class MyMatrix
{
public:
    MyMatrix(int r, int c) : r(r), c(c), l(r, std::vector<int>(c)) {}
    std::vector<int>& operator[](int r) { return l[r]; }
    const std::vector<int>& operator[](int r) const { return l[r]; }
    using index_type = int;
    using value_type = int;
    value_type& operator()(index_type i, index_type j) { return l[i][j]; }
    value_type operator()(index_type i, index_type j) const { return l[i][j]; }
    index_type min_row() const { return 0; }
    index_type max_row() const { return r - 1; }
    index_type min_column() const { return 0; }
    index_type max_column() const { return c - 1; }
private:
    int r, c;
    std::vector<std::vector<int>> l;
};

不是最优雅或最有效的代码,但它确实可以编译,并希望能工作。
那就这样用吧

MyMatrix l(r, c);
...
to_reduced_row_echelon_form(l);

相关问题