我试着按照PyTorch的教程在这里:www.example.com网站。https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py.
完整代码如下:
import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# Loading and normalizing CIFAR10
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Shows training images, DOESN'T WORK
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
# define a convolutional neural network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# Define a loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Train the network
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
# DOESN'T WORK
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# save trained model
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
# test the network on the test data
dataiter = iter(testloader)
images, labels = dataiter.next()
# print images
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
# load back saved model
net = Net()
net.load_state_dict(torch.load(PATH))
# see what the nueral network thinks these examples above are:
ouputs = net(images)
# index of the highest energy
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
# accuracy on the whole dataset
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
# classes that perfomed well vs classes that didn't perform well
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
if __name__ == '__main__':
torch.multiprocessing.freeze_support()
然而我得到了这个问题:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
我只是试着在一个普通的python文件中运行它。当我添加
if __name__ == '__main__':
freeze_support()
到文件的结尾,我仍然得到错误。
4条答案
按热度按时间wwodge7n1#
对于遇到这个问题的其他人,我认为您需要定义一个主函数并在那里运行培训。然后添加:
在python文件的末尾。
这为我修复了另一个PyTorch培训计划中的freeze_support()问题。
inb24sb22#
只需将
num_workers
参数设置为等于序列的0
并测试DataLoader
。b4qexyjb3#
以下对我很有效:
1.使用spawn启动方法
import torch.multiprocessing as mp
mp.use_start_method('spawn', force=True)
强制是必不可少的,因为它返回了另一个上下文已设置的错误
1.在第一行使用main函数(
if __name__ == '__main__':
),甚至在导入之前(很多关于stackoverflow的答案显示start()和join()方法应该在main中,并且运行良好。但我想我使用了几个脚本和模块,所以它没有识别正确的main,所以我不得不将其包含在第一个文件的第一行)。iszxjhcz4#
在MacOS,M1 mac mini,torch 1.13.1版本上,在脚本顶部添加以下内容对我来说很有效,无需定义
main
: