我正在使用CNN创建人脸识别。我正在学习教程。我使用的是Tensorflow == 1.15。
该程序将采取70快照用户的脸,并保存在文件夹'数据集'
我一直收到错误:
ValueError:检查目标时出错:预期activation_6具有形状(70,),但获得的阵列具有形状(71,)
输入形状-(32,32,1)
类(n_类)-70
K.clear_session()
n_faces = len(set(ids))
model = model((32,32,1),n_faces) #Calling Model given in next code block
faces = np.asarray(faces)
faces = np.array([downsample_image(ab) for ab in faces])
ids = np.asarray(ids)
faces = faces[:,:,:,np.newaxis]
print("Shape of Data: " + str(faces.shape))
print("Number of unique faces : " + str(n_faces))
ids = to_categorical(ids)
faces = faces.astype('float32')
faces /= 255.
x_train, x_test, y_train, y_test = train_test_split(faces,ids, test_size = 0.2, random_state = 0)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
checkpoint = callbacks.ModelCheckpoint('trained_model.h5', monitor='val_acc',
save_best_only=True, save_weights_only=True, verbose=1)
model.fit(x_train, y_train,
batch_size=32,
epochs=10,
validation_data=(x_test, y_test),
shuffle=True,callbacks=[checkpoint])
def model(input_shape,num_classes):
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation("relu"))
model.add(Conv2D(64, (3, 3)))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(Conv2D(64, (1, 1)))
model.add(Dropout(0.5))
model.add(BatchNormalization())
model.add(Activation("relu"))
model.add(Conv2D(128, (3, 3)))
model.add(Dropout(0.5))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (1, 1)))
model.add(Activation("relu"))
model.add(Flatten())
model.add(Dense(32))
model.add(Dense(num_classes))
model.add(Activation("softmax"))
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
model.summary()
return model
产出
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 30, 30, 32) 320
_________________________________________________________________
activation_1 (Activation) (None, 30, 30, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 28, 28, 64) 18496
_________________________________________________________________
batch_normalization_1 (Batch (None, 28, 28, 64) 256
_________________________________________________________________
activation_2 (Activation) (None, 28, 28, 64) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 28, 28, 64) 4160
_________________________________________________________________
dropout_1 (Dropout) (None, 28, 28, 64) 0
_________________________________________________________________
batch_normalization_2 (Batch (None, 28, 28, 64) 256
_________________________________________________________________
activation_3 (Activation) (None, 28, 28, 64) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 26, 26, 128) 73856
_________________________________________________________________
dropout_2 (Dropout) (None, 26, 26, 128) 0
_________________________________________________________________
activation_4 (Activation) (None, 26, 26, 128) 0
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 128) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 13, 13, 64) 8256
_________________________________________________________________
activation_5 (Activation) (None, 13, 13, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 10816) 0
_________________________________________________________________
dense_1 (Dense) (None, 32) 346144
_________________________________________________________________
dense_2 (Dense) (None, 70) 2310
_________________________________________________________________
activation_6 (Activation) (None, 70) 0
=================================================================
Total params: 454,054
Trainable params: 453,798
Non-trainable params: 256
_________________________________________________________________
Shape of Data: (70, 32, 32, 1)
Number of unique faces : 70
我正在计算x_train、x_test、y_train、y_test,如下所示
x_train, x_test, y_train, y_test = train_test_split(faces,ids, test_size = 0.2, random_state = 0)
产出
x_序列-(56、32、32、1)
y_列车-(56,71)
x_测试-(14、32、32、1)
y_检验-(14,71)
我做错了什么与CNN层的尺寸?请帮助
2条答案
按热度按时间sqxo8psd1#
在model.summary()输出中,您可以看到最终的密集层具有shape(None,70),None代表批量大小,目前尚不清楚。70是每张图像输出的维数。
根据y_train和y_pred,您似乎希望输出71个类,而不是70个类,因此维度不匹配。
这应该会起作用。我不知道为什么你的y值的长度和你的类数不一样。一个原因可能是,有一个类是“nothing”,所以应该在其他类中选择的类是正确的。这可以解释为什么你有70个类,你需要一个71维的输出。
gwbalxhn2#
我怀疑
ids
具有(70,71)
的形状(行,列)-其中70是示例数,71是类的softmax向量(我通过添加x_train.shape[0]=56和x_test.shape[0]=14得到这个值)。在
n_faces = len(set(ids))
这一行中,set
方法正在检查唯一列表(每个类的softmax向量),然后len
方法给您提供示例数,即70。在
train_test_split
中,y
参数是整个ids
,因此它沿着行分割(70个示例),同时保留每个示例的softmax向量(71维向量)。这可以解释为什么模型具有70维输出,而实际上需要71维输出。