我有一个蹩脚的机器学习聊天机器人,我训练使用一些JSON数据。对于一些不同的事情,你可以要求机器人有一个适当的响应列表的请求。我的问题是搞清楚该怎么做的那些没有。对于那些人的我有python函数,我想运行在响应给定的某个命令。有没有什么办法可以做到,因为我知道在JSON中你不能传递函数。
{"intents": [
{"tag": "greeting",
"patterns": ["Hi", "Hello", "What's up", "Hey", "Hola", "Howdy"],
"responses": ["Hi", "Hello", "What's up", "Hey", "How can I help", "Hi there", "What can I do for you"]
},
{"tag": "goodbye",
"patterns": ["Bye", "See you later", "Goodbye", "later", "farewell", "bye-bye", "so long"],
"responses": ["See you later", "Have a nice day", "Bye", "Goodbye"]
},
{"tag": "time",
"patterns": ["What time is it", "What's the time", "time please"],
"responses": []
一个python函数的示例
from datetime import datetime
from datetime import date
def simple(text):
if text == "what time is it":
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Current Time =", current_time)
这里还有机器学习方面的完整代码
import nltk
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
import numpy
import tflearn
import tensorflow
import random
import json
import pickle
with open("intents.json") as file:
data = json.load(file)
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w.lower()) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.compat.v1.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
try:
model.load("model.tflearn")
except:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True)
model.save("model.tflearn")
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return numpy.array(bag)
def chat():
print("Start talking with the bot (type quit to stop)!")
while True:
inp = input("You: ")
if inp.lower() == "quit":
break
results = model.predict([bag_of_words(inp, words)])[0]
results_index = numpy.argmax(results)
tag = labels[results_index]
if results[results_index] > 0.7:
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
print(random.choice(responses))
else:
print("I'm not sure what you want")
chat()
1条答案
按热度按时间az31mfrm1#
一个简单的方法是这样做:“如果你预测的'tag'是(例如)'time' do foo()。
在您的代码中,它看起来像这样:
例如,你可以创建一个函数,当机器人“理解”用户说了一些触发了“再见”标签的话时,停止infinit while循环。