pandas Python panda-宽数据-识别时间序列中最早和最大的列

4szc88ey  于 2023-01-28  发布在  Python
关注(0)|答案(5)|浏览(113)

我正在使用一个以宽格式编写的数据框架。每本书都有一些销售额,但有些季度有空值,因为这本书在该季度之前没有发布。

import pandas as pd

data = {'Book Title': ['A Court of Thorns and Roses', 'Where the Crawdads Sing', 'Bad Blood', 'Atomic Habits'],
    'Metric': ['Book Sales','Book Sales','Book Sales','Book Sales'],
   'Q1 2022': [100000,0,0,0],
   'Q2 2022': [50000,75000,0,35000],
   'Q3 2022': [25000,150000,20000,45000],
   'Q4 2022': [25000,20000,10000,65000]}

df1 = pd.DataFrame(data)

我想要做的是创建一个字段来标识“第一个可用季度的ID”(“First Quarter ID”),另一个字段标识“具有最大销售额的季度的ID”(“Max Quarter ID”)。然后,我想显示两个字段,分别显示第一个可用季度和第二个可用季度的销售额。

提示去做这件事?谢谢!

iecba09b

iecba09b1#

可能的解决方案:

df1 = df1.replace(0, np.nan)

d = df1.iloc[:, 2:]
df1.insert(2, 'First Quarter ID', d.columns[np.max(
    np.cumsum(np.isnan(d), axis=1), axis=1)])
df1.insert(3, 'Max Quarter ID', d.columns[np.argmax(
    np.cumsum(d.values == np.max(d, axis=1).values[:, None], axis=1), axis=1)])

另一种可能的解决方案:

df1 = df1.replace(0, np.nan)

a = df1.shape[1] - np.argmin(df1.notna().values[:, ::-1], axis=1)
a = df1.columns[np.where(a == df1.shape[1], 2, a)]
b = df1.iloc[:, 2:].columns[np.nanargmax(df1.iloc[:, 2:].values, axis=1)]
df1['First Quarter ID'] = a
df1['Max Quarter ID'] = b

输出:

Book Title      Metric First Quarter ID Max Quarter ID  \
0  A Court of Thorns and Roses  Book Sales          Q1 2022        Q1 2022   
1      Where the Crawdads Sing  Book Sales          Q2 2022        Q3 2022   
2                    Bad Blood  Book Sales          Q3 2022        Q3 2022   
3                Atomic Habits  Book Sales          Q2 2022        Q4 2022   

    Q1 2022  Q2 2022  Q3 2022  Q4 2022  
0  100000.0  50000.0    25000    25000  
1       NaN  75000.0   150000    20000  
2       NaN      NaN    20000    10000  
3       NaN  35000.0    45000    65000
ehxuflar

ehxuflar2#

编辑、更新方法,以便在熔化后更好地利用groupby

#melt table to be long-form
long_df1 = df1.melt(
    id_vars = ['Book Title','Metric'],
    value_name = 'Sales',
    var_name = 'Quarter',
)

#remove rows that have 0 sales (could be dropna if null values used instead)
long_df1 = long_df1[long_df1['Sales'].gt(0)]

#groupby book title and find the first/max quarter/sales
gb = long_df1.groupby('Book Title')

first_df = gb[['Quarter','Sales']].first()
max_df = long_df1.loc[gb['Sales'].idxmax(),['Book Title','Quarter','Sales']].set_index('Book Title')

#concatenate the first/max dfs
out_df = pd.concat(
    (first_df.add_prefix('First '),max_df.add_prefix('Max ')),
    axis=1
).reset_index()

产出

oymdgrw7

oymdgrw73#

使用具有整形的自定义groupby.agg

df2 = (df1
  .replace(0, np.nan)
  .filter(regex=r'Q\d+')
  .stack().reset_index(level=1)
  .set_axis(['Quarter ID', 'Quarter'], axis=1)
)

out = df1.join(
  pd.concat([df2.groupby(level=0).first().add_prefix('First '),
             df2.sort_values(by='Quarter').groupby(level=0).last().add_prefix('Max ')
             ], axis=1)
)

输出:

Book Title      Metric  Q1 2022  Q2 2022  Q3 2022  \
0  A Court of Thorns and Roses  Book Sales   100000    50000    25000   
1      Where the Crawdads Sing  Book Sales        0    75000   150000   
2                    Bad Blood  Book Sales        0        0    20000   
3                Atomic Habits  Book Sales        0    35000    45000   

   Q4 2022 First Quarter ID  First Quarter Max Quarter ID  Max Quarter  
0    25000          Q1 2022       100000.0        Q1 2022     100000.0  
1    20000          Q2 2022        75000.0        Q3 2022     150000.0  
2    10000          Q3 2022        20000.0        Q3 2022      20000.0  
3    65000          Q2 2022        35000.0        Q4 2022      65000.0
5n0oy7gb

5n0oy7gb4#

也许这就是你要找的。

import pandas as pd
import numpy as np

data = {'Book Title': ['A Court of Thorns and Roses', 'Where the Crawdads Sing', 'Bad Blood', 'Atomic Habits'],
    'Metric': ['Book Sales','Book Sales','Book Sales','Book Sales'],
   'Q1 2022': [100000,0,0,0],
   'Q2 2022': [50000,75000,0,35000],
   'Q3 2022': [25000,150000,20000,45000],
   'Q4 2022': [25000,20000,10000,65000]}

df1 = pd.DataFrame(data)

df1['First Quarter ID'] = [df1.iloc[idx, 2:].replace(0, np.nan).first_valid_index() for idx in df1.index]
df1['Max Quarter ID'] =  df1.set_index(['Book Title', 'Metric']).iloc[:, :-1].idxmax(axis=1).to_list()

dbf7pr2w

dbf7pr2w5#

一个选项与麻木:

Qs = df1.filter(like='Q')
first_qtr = Qs.gt(0).idxmax(1)
max_qtr = Qs.idxmax(1)
arr = Qs.gt(0).astype(float).replace(0, np.nan).to_numpy()
indexer = np.apply_along_axis(np.argpartition, axis = 1, arr = arr, kth=2)
indexer = indexer[:, :2]
arr = np.take_along_axis(Qs.to_numpy(), indexer, axis=-1)
arr = pd.DataFrame(arr, columns = ['First Quarter', 'Second Quarter'])
qtrs = {'First Quarter ID': first_qtr, 'Max Quarter ID': max_qtr}
df1.iloc[:, :2].assign(**qtrs, **arr)

                    Book Title      Metric First Quarter ID Max Quarter ID  First Quarter  Second Quarter
0  A Court of Thorns and Roses  Book Sales          Q1 2022        Q1 2022         100000           50000
1      Where the Crawdads Sing  Book Sales          Q2 2022        Q3 2022          75000          150000
2                    Bad Blood  Book Sales          Q3 2022        Q3 2022          20000           10000
3                Atomic Habits  Book Sales          Q2 2022        Q4 2022          35000           45000

相关问题