在尝试使用相同的数据集依次评估一组变压器模型以检查哪一个性能更好时。
模型列表如下:
MODELS = [
('xlm-mlm-enfr-1024' ,"XLMModel"),
('distilbert-base-cased', "DistilBertModel"),
('bert-base-uncased' ,"BertModel"),
('roberta-base' ,"RobertaModel"),
("cardiffnlp/twitter-roberta-base-sentiment","RobertaSentTW"),
('xlnet-base-cased' ,"XLNetModel"),
#('ctrl' ,"CTRLModel"),
('transfo-xl-wt103' ,"TransfoXLModel"),
('bert-base-cased' ,"BertModelUncased"),
('xlm-roberta-base' ,"XLMRobertaModel"),
('openai-gpt' ,"OpenAIGPTModel"),
('gpt2' ,"GPT2Model")
在“ctrl”模型返回以下错误之前,所有这些都工作正常:Asking to pad but the tokenizer does not have a padding token. Please select a token to use as 'pad_token' '(tokenizer.pad_token = tokenizer.eos_token e.g.)' or add a new pad token via 'tokenizer.add_special_tokens({'pad_token': '[PAD]'})'.
在标记我的数据集的句子时。
标记化代码为
SEQ_LEN = MAX_LEN #(50)
for pretrained_weights, model_name in MODELS:
print("***************** INICIANDO " ,model_name,", weights ",pretrained_weights, "********* ")
print("carganzo el tokenizador ()")
tokenizer = AutoTokenizer.from_pretrained(pretrained_weights)
print("creando el modelo preentrenado")
transformer_model = TFAutoModel.from_pretrained(pretrained_weights)
print("aplicando el tokenizador al dataset")
##APLICAMOS EL TOKENIZADOR##
def tokenize(sentence):
tokens = tokenizer.encode_plus(sentence, max_length=MAX_LEN,
truncation=True, padding='max_length',
add_special_tokens=True, return_attention_mask=True,
return_token_type_ids=False, return_tensors='tf')
return tokens['input_ids'], tokens['attention_mask']
# initialize two arrays for input tensors
Xids = np.zeros((len(df), SEQ_LEN))
Xmask = np.zeros((len(df), SEQ_LEN))
for i, sentence in enumerate(df['tweet']):
Xids[i, :], Xmask[i, :] = tokenize(sentence)
if i % 10000 == 0:
print(i) # do this so we can see some progress
arr = df['label'].values # take label column in df as array
labels = np.zeros((arr.size, arr.max()+1)) # initialize empty (all zero) label array
labels[np.arange(arr.size), arr] = 1 # add ones in indices where we have a value`
我已经尝试按照解决方案的要求定义填充标记,但是出现了以下错误
could not broadcast input array from shape (3,) into shape (50,)
成一直线
Xids[i, :], Xmask[i, :] = tokenize(sentence)
我也试过this solution,也不起作用。
如果你已经设法读到这里,谢谢你。
需要任何帮助。
2条答案
按热度按时间0md85ypi1#
您可以使用
add_special_tokens
API添加[PAD]
令牌。oaxa6hgo2#
kkgarg idea是正确的,但是你还需要更新你的模型令牌嵌入大小。
检查this相关问题。