R语言 在每个组中将列折叠/连接/聚合为单个逗号分隔的字符串

daupos2t  于 2023-02-01  发布在  其他
关注(0)|答案(6)|浏览(205)

我想根据两个分组变量聚合数据框中的一列,并用逗号分隔各个值。
以下是一些数据:

data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
data
#     A B  C
# 1 111 1  5
# 2 111 2  6
# 3 111 1  7
# 4 222 2  8
# 5 222 1  9
# 6 222 2 10

"A"和"B"是分组变量,"C"是我想折叠成逗号分隔的character字符串的变量。

library(plyr)
ddply(data, .(A,B), summarise, test = list(C))

    A B  test
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

但当我尝试将test column转换为character时,它变成了这样:

ddply(data, .(A,B), summarise, test = as.character(list(C)))
#     A B     test
# 1 111 1  c(5, 7)
# 2 111 2        6
# 3 222 1        9
# 4 222 2 c(8, 10)

如何保持character并用逗号分隔它们?例如,第1行只能是"5,7",而不能是c(5,7)。

rjjhvcjd

rjjhvcjd1#

下面是一些使用toString的选项,这个函数可以连接一个字符串向量,使用逗号和空格分隔各个部分。如果不需要逗号,可以使用paste()collapse参数。

    • 数据表**
# alternative using data.table
library(data.table)
as.data.table(data)[, toString(C), by = list(A, B)]
    • 聚合**不使用包:
# alternative using aggregate from the stats package in the core of R
aggregate(C ~., data, toString)
    • 平方英尺f**

下面是使用SQL函数group_concatsqldf package的替代方法:

library(sqldf)
sqldf("select A, B, group_concat(C) C from data group by A, B", method = "raw")
    • dplyr**一个dplyr替代品:
library(dplyr)
data %>%
  group_by(A, B) %>%
  summarise(test = toString(C)) %>%
  ungroup()
    • 聚合物**
# plyr
library(plyr)
ddply(data, .(A,B), summarize, C = toString(C))
rjzwgtxy

rjzwgtxy2#

以下是stringr/tidyverse解决方案:

library(tidyverse)
library(stringr)

data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))

data %>%
 group_by(A, B) %>%
 summarize(text = str_c(C, collapse = ", "))

# A tibble: 4 x 3
# Groups:   A [2]
      A     B text 
  <dbl> <int> <chr>
1   111     1 5, 7 
2   111     2 6    
3   222     1 9    
4   222     2 8, 10
cwdobuhd

cwdobuhd3#

更改as.character的放置位置:

> out <- ddply(data, .(A, B), summarise, test = list(as.character(C)))
> str(out)
'data.frame':   4 obs. of  3 variables:
 $ A   : num  111 111 222 222
 $ B   : int  1 2 1 2
 $ test:List of 4
  ..$ : chr  "5" "7"
  ..$ : chr "6"
  ..$ : chr "9"
  ..$ : chr  "8" "10"
> out
    A B  test
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

注意,在这种情况下,每个项实际上仍然是一个单独的字符,而不是单个字符串。也就是说,这不是一个看起来像“5,7”的实际字符串,而是两个字符,“5”和“7”,R显示它们之间的逗号。
请与以下内容进行比较:

> out2 <- ddply(data, .(A, B), summarise, test = paste(C, collapse = ", "))
> str(out2)
'data.frame':   4 obs. of  3 variables:
 $ A   : num  111 111 222 222
 $ B   : int  1 2 1 2
 $ test: chr  "5, 7" "6" "9" "8, 10"
> out
    A B  test
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

当然,以R为底的可比溶液为aggregate

> A1 <- aggregate(C ~ A + B, data, function(x) c(as.character(x)))
> str(A1)
'data.frame':   4 obs. of  3 variables:
 $ A: num  111 222 111 222
 $ B: int  1 1 2 2
 $ C:List of 4
  ..$ 0: chr  "5" "7"
  ..$ 1: chr "9"
  ..$ 2: chr "6"
  ..$ 3: chr  "8" "10"
> A2 <- aggregate(C ~ A + B, data, paste, collapse = ", ")
> str(A2)
'data.frame':   4 obs. of  3 variables:
 $ A: num  111 222 111 222
 $ B: int  1 1 2 2
 $ C: chr  "5, 7" "9" "6" "8, 10"
2g32fytz

2g32fytz4#

这里有一个小的改进,以避免重复

# 1. Original data set
data <- data.frame(
  A = c(rep(111, 3), rep(222, 3)), 
  B = rep(1:2, 3), 
  C = c(5:10))

# 2. Add duplicate row
data <- rbind(data, data.table(
  A = 111, B = 1, C = 5
))

# 3. Solution with duplicates
data %>%
  group_by(A, B) %>%
  summarise(test = toString(C)) %>%
  ungroup()

#      A     B test   
#   <dbl> <dbl> <chr>  
# 1   111     1 5, 7, 5
# 2   111     2 6      
# 3   222     1 9      
# 4   222     2 8, 10

# 4. Solution without duplicates
data %>%
  select(A, B, C) %>% unique() %>% 
  group_by(A, B) %>%
  summarise(test = toString(C)) %>%
  ungroup()

#    A     B test 
#   <dbl> <dbl> <chr>
# 1   111     1 5, 7 
# 2   111     2 6    
# 3   222     1 9    
# 4   222     2 8, 10

希望能有用。

nzk0hqpo

nzk0hqpo5#

使用collapse中的collap

library(collapse)
collap(data, ~ A + B, toString)
    A B     C
1 111 1  5, 7
2 111 2     6
3 222 1     9
4 222 2 8, 10

数据

data <- data.frame(A = c(rep(111, 3), rep(222, 3)), B = rep(1:2, 3), C = c(5:10))
mzmfm0qo

mzmfm0qo6#

更新的dplyr 1.1.0解决方案,具有与.by的内联分组:

data %>% 
  summarise(test = toString(C), .by = c(A, B))

    A B  test
1 111 1  5, 7
2 111 2     6
3 222 2 8, 10
4 222 1     9

基准:

benchmark <-
  bench::mark(
  data.table = as.data.table(data)[, toString(C), by = list(A, B)],
  aggregate = aggregate(C ~., data, toString),
  sqldf = sqldf("select A, B, group_concat(C) C from data group by A, B", method = "raw"),
  dplyr1.0.0 = data %>%
    group_by(A, B) %>%
    summarise(test = toString(C)) %>%
    ungroup(),
  dplyr1.1.0 = summarise(data, test = toString(C), .by = c(A, B)),
  collapse = collap(data, ~ A + B, toString),
  min_iterations = 30,
  check = FALSE
)

plot(benchmark)

相关问题