Paddle test_sync_batch_norm_op random failure (Segmentation fault)

9udxz4iz  于 2023-02-04  发布在  其他
关注(0)|答案(2)|浏览(179)

bug描述 Describe the Bug

test_sync_batch_norm_op randomly receives segfault on P100 x 2. Error message:

Start 1308: test_sync_batch_norm_op
1/1 Test #1308: test_sync_batch_norm_op ..........***Failed   51.02 sec
W1230 08:00:16.132694  9679 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 6.0, Driver API Version: 12.0, Runtime API Version: 11.7
W1230 08:00:16.132745  9679 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4.
I1230 08:00:19.037106  9679 interpretercore.cc:248] New Executor is Running.
W1230 08:00:19.142438  9679 parallel_executor.cc:680] Cannot enable P2P access from 0 to 1
W1230 08:00:19.142482  9679 parallel_executor.cc:680] Cannot enable P2P access from 1 to 0
I1230 08:00:21.305244  9679 build_strategy.cc:416] set enable_sequential_execution:1
I1230 08:00:21.307850  9679 parallel_executor.cc:1018] ParallelExecutor is Running (RunAndMerge).
I1230 08:00:23.322465  9679 build_strategy.cc:416] set enable_sequential_execution:1
I1230 08:00:23.563740  9679 interpreter_util.cc:528] Standalone Executor is Used.
I1230 08:00:23.772176  9679 build_strategy.cc:416] set enable_sequential_execution:1
W1230 08:00:23.774336  9679 fuse_all_reduce_op_pass.cc:79] Find all_reduce operators: 3. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 3.
I1230 08:00:24.357183  9679 build_strategy.cc:416] set enable_sequential_execution:1
W1230 08:00:24.359194  9679 fuse_all_reduce_op_pass.cc:79] Find all_reduce operators: 3. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 3.
I1230 08:00:24.924245  9679 build_strategy.cc:416] set enable_sequential_execution:1
I1230 08:00:25.247583  9679 build_strategy.cc:416] set enable_sequential_execution:1
I1230 08:00:25.542920  9679 build_strategy.cc:416] set enable_sequential_execution:1
W1230 08:00:25.546025  9679 fuse_all_reduce_op_pass.cc:79] Find all_reduce operators: 3. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 3.
I1230 08:00:25.948423  9679 build_strategy.cc:416] set enable_sequential_execution:1
W1230 08:00:25.950547  9679 fuse_all_reduce_op_pass.cc:79] Find all_reduce operators: 3. To make the speed faster, some all_reduce ops are fused during training, after fusion, the number of all_reduce ops is 3.
/home/scratch.tizheng_sw/tmp/fix_ut/paddle-develop/build/python/paddle/nn/layer/norm.py:724: UserWarning: When training, we now always track global mean and variance.
  "When training, we now always track global mean and variance."
/home/scratch.tizheng_sw/tmp/fix_ut/paddle-develop/build/python/paddle/fluid/data_feeder.py:161: UserWarning: The data type of 'input' in conv2d only support float16 in GPU now.
  % (input_name, op_name, extra_message)
/home/scratch.tizheng_sw/tmp/fix_ut/paddle-develop/build/python/paddle/fluid/data_feeder.py:161: UserWarning: The data type of 'Out' in guassian_random only support float16 in GPU now.
  % (input_name, op_name, extra_message)
/home/scratch.tizheng_sw/tmp/fix_ut/paddle-develop/build/python/paddle/fluid/data_feeder.py:161: UserWarning: The data type of 'input' in batch_norm only support float16 in GPU now.
  % (input_name, op_name, extra_message)
/home/scratch.tizheng_sw/tmp/fix_ut/paddle-develop/build/python/paddle/fluid/data_feeder.py:161: UserWarning: The data type of 'x' in cast only support float16 in GPU now.
  % (input_name, op_name, extra_message)
/home/scratch.tizheng_sw/tmp/fix_ut/paddle-develop/build/python/paddle/fluid/executor.py:1740: UserWarning: Standalone executor is not used for data parallel
  UserWarning,

--------------------------------------
C++ Traceback (most recent call last):
--------------------------------------
0   paddle::framework::ScopePool::Clear()
1   paddle::framework::ScopePool::DeleteScope(paddle::framework::Scope*)
2   paddle::framework::Scope::~Scope()
3   std::_Sp_counted_base<(__gnu_cxx::_Lock_policy)2>::_M_release()
4   paddle::framework::Variable::PlaceholderImpl<phi::DenseTensor>::~PlaceholderImpl()
5   std::_Sp_counted_deleter<phi::Allocation*, std::function<void (phi::Allocation*)>, std::allocator<void>, (__gnu_cxx::_Lock_policy)2>::_M_dispose()
6   paddle::memory::allocation::CUDAAllocator::FreeImpl(phi::Allocation*)
7   paddle::platform::RecordedGpuMallocHelper::Free(void*, unsigned long)
8   std::_Rb_tree<void*, void*, std::_Identity<void*>, std::less<void*>, std::allocator<void*> >::erase(void* const&)

----------------------
Error Message Summary:
----------------------
FatalError: `Segmentation fault` is detected by the operating system.
  [TimeInfo: *** Aborted at 1672387226 (unix time) try "date -d @1672387226" if you are using GNU date ***]
  [SignalInfo: *** SIGSEGV (@0x18) received by PID 9679 (TID 0x7f0eeead4740) from PID 24 ***]

Segmentation fault

0% tests passed, 1 tests failed out of 1

Label Time Summary:
RUN_TYPE=DIST    =  51.02 sec*proc (1 test)

Way to reproduce

  • docker image: paddlepaddle/paddle:2.4.1-gpu-cuda11.7-cudnn8.4-trt8.4
  • Hardware: Tesla P100-PCIE-16GB x 2
  • Build options:
cmake -B${BUILD_DIR} -S${BASE_DIR} \
    -DCMAKE_EXPORT_COMPILE_COMMANDS=ON \
    -DCMAKE_BUILD_TYPE=Release \
    -DCMAKE_CUDA_FLAGS="-t0" \
    -DCUDA_ARCH_NAME=Manual \
    -DCUDA_ARCH_BIN="60 80" \
    -DWITH_INCREMENTAL_COVERAGE=OFF \
    -DWITH_INFERENCE_API_TEST=ON \
    -DWITH_DISTRIBUTE=ON \
    -DWITH_COVERAGE=OFF \
    -DWITH_TENSORRT=OFF \
    -DWITH_TESTING=ON \
    -DWITH_CONTRIB=ON \
    -DWITH_ROCM=OFF \
    -DWITH_RCCL=OFF \
    -DWITH_STRIP=ON \
    -DWITH_MKL=OFF \
    -DWITH_AVX=ON \
    -DWITH_GPU=ON \
    -DWITH_PYTHON=ON \
    -DWITH_UNITY_BUILD=OFF \
    -Wno-dev

其他补充信息 Additional Supplementary Information

The odd is small (approximately once in every 100 runs).

niwlg2el

niwlg2el1#

您好,我们已经收到了您的问题,会安排技术人员尽快解答您的问题,请耐心等待。请您再次检查是否提供了清晰的问题描述、复现代码、环境&版本、报错信息等。同时,您也可以通过查看 官网API文档常见问题历史IssueAI社区 来寻求解答。祝您生活愉快~

Hi! We've received your issue and please be patient to get responded. We will arrange technicians to answer your questions as soon as possible. Please make sure that you have posted enough message to demo your request. You may also check out the APIFAQGithub Issue and AI community to get the answer.Have a nice day!

g52tjvyc

g52tjvyc2#

Thanks, will ask the owner of this ut for help.

相关问题