我试图适应一个分类问题,其中有一个(40000对400)分裂之间的0和1类。我试图发挥周围的过采样和欠采样(不是首选),但不断遇到问题。
错误-传递值的形状为(34372,1),索引隐含(34372,36)
258 print("Before undersampling X_train:",X_train.shape[0])
259
--> 260 X_train,y_train=ros(X_train,y_train) #change this to ro_smote for oversampling
261 print("After undersampling/oversampling X_train:",X_train.shape[0])
262 X_train[label_fg] = y_train
/tmp/tmpta5bmz69.py in ros(X_train, y_train)
131 def ros(X_train,y_train):
132 ros = RandomOverSampler(random_state=1,sampling_strategy = 0.25) #sampling-stragey- 0.25,0.5,1,0.75
--> 133 X_train_on, y_train_on = ros.fit_resample(X_train, y_train)
134
135 return X_train_on,y_train_on
/databricks/python/lib/python3.8/site-packages/imblearn/base.py in fit_resample(self, X, y)
87 )
88
---> 89 X_, y_ = arrays_transformer.transform(output[0], y_)
90 return (X_, y_) if len(output) == 2 else (X_, y_, output[2])
91
/databricks/python/lib/python3.8/site-packages/imblearn/utils/_validation.py in transform(self, X, y)
38
39 def transform(self, X, y):
---> 40 X = self._transfrom_one(X, self.x_props)
41 y = self._transfrom_one(y, self.y_props)
42 return X, y
/databricks/python/lib/python3.8/site-packages/imblearn/utils/_validation.py in _transfrom_one(self, array, props)
57 import pandas as pd
58
---> 59 ret = pd.DataFrame(array, columns=props["columns"])
60 ret = ret.astype(props["dtypes"])
61 elif type_ == "series":
/databricks/python/lib/python3.8/site-packages/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
582 mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype)
583 else:
--> 584 mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy)
585 else:
586 mgr = init_dict({}, index, columns, dtype=dtype)
/databricks/python/lib/python3.8/site-packages/pandas/core/internals/construction.py in init_ndarray(values, index, columns, dtype, copy)
236 block_values = [values]
237
--> 238 return create_block_manager_from_blocks(block_values, [columns, index])
239
240
/databricks/python/lib/python3.8/site-packages/pandas/core/internals/managers.py in create_block_manager_from_blocks(blocks, axes)
1685 blocks = [getattr(b, "values", b) for b in blocks]
1686 tot_items = sum(b.shape[0] for b in blocks)
-> 1687 raise construction_error(tot_items, blocks[0].shape[1:], axes, e)
1688
1689
ValueError: Shape of passed values is (34372, 1), indices imply (34372, 36)Thu Aug 25 14:52:24 2022 Python shell started with PID 4674 and guid b28118c68bbf497ea6029cc003bff481
请注意,我有一个hotencoded我的分类数据集,这导致了36个功能,我已经改变成'int'。
我错过什么了吗?
preped_data=feature_engg(preped_data)
preped_data = preped_data.astype(int)
def ros(X_train,y_train):
ros = RandomOverSampler(random_state=1,sampling_strategy = 0.25)
X_train_on, y_train_on = ros.fit_resample(X_train, y_train)
return X_train_on,y_train_on
label_fg='churn_fg'
X_train, X_test, y_train, y_test = train_test_split(
preped_data.drop(label_fg, axis=1), preped_data[label_fg], stratify=preped_data[label_fg],
shuffle=True, test_size=0.3, random_state=42)
print("Before undersampling X_train columns:",X_train.columns)
print("Before undersampling X_train:",X_train.shape[0])
X_train,y_train=ros(X_train,y_train)
1条答案
按热度按时间zujrkrfu1#
我在使用one-hot-encoder后遇到了同样的问题。在我的例子中,这个问题是因为one-hot-encoder返回稀疏矩阵(运行df.info()检查)。为了解决这个问题,我在one-hot编码后尝试了以下方法:
其中
oh-cols
是需要应用独热码编码的列。