python Tensorflow 2.10.0未检测到GPU

swvgeqrz  于 2023-02-07  发布在  Python
关注(0)|答案(2)|浏览(469)

我创建了一个conda环境并安装了tensorflow,如下所示:

conda create -n foo python=3.10
conda activate foo
conda install mamba
mamba install tensorflow -c conda-forge
mamba install cudnn cudatoolkit

这安装了TensorFlow 2.10.0。我安装了CUDA 11.2和cuDNN 8.1,然后尝试运行以下命令:

import tensorflow as tf

print(f"GPUs available: {tf.config.list_physical_devices('GPU')}")

但它只返回一个空列表。我想在ML项目中使用3060ti,但TensorFlow没有检测到它。我发现了与我类似的问题,如thisthisthis,但它们使用的是旧版本的TensorFlow,该版本将安装tensorflow-gpu,并且不再受支持。我该如何修复此问题,甚至尝试排除故障。
我使用的是Windows 10计算机
nvidia-smi的输出:

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 528.24       Driver Version: 528.24       CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name            TCC/WDDM | Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ... WDDM  | 00000000:09:00.0  On |                  N/A |
| 30%   43C    P8    16W / 200W |    809MiB /  8192MiB |      3%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      7176    C+G   ...perience\NVIDIA Share.exe    N/A      |
|    0   N/A  N/A      9240    C+G   C:\Windows\explorer.exe         N/A      |
|    0   N/A  N/A     12936    C+G   ...cw5n1h2txyewy\LockApp.exe    N/A      |
|    0   N/A  N/A     13652    C+G   ...e\PhoneExperienceHost.exe    N/A      |
|    0   N/A  N/A     14020    C+G   ...2txyewy\TextInputHost.exe    N/A      |
|    0   N/A  N/A     14888    C+G   ...ser\Application\brave.exe    N/A      |
|    0   N/A  N/A     15112    C+G   ...5n1h2txyewy\SearchApp.exe    N/A      |
|    0   N/A  N/A     16516    C+G   ...oft OneDrive\OneDrive.exe    N/A      |
|    0   N/A  N/A     18296    C+G   ...aming\Spotify\Spotify.exe    N/A      |
|    0   N/A  N/A     18624    C+G   ...in7x64\steamwebhelper.exe    N/A      |
|    0   N/A  N/A     18672    C+G   ...\app-1.0.9010\Discord.exe    N/A      |
|    0   N/A  N/A     18828    C+G   ...lPanel\SystemSettings.exe    N/A      |
|    0   N/A  N/A     19284    C+G   ...Central\Razer Central.exe    N/A      |
|    0   N/A  N/A     20020    C+G   ...arp.BrowserSubprocess.exe    N/A      |
|    0   N/A  N/A     22912    C+G   ...8wekyb3d8bbwe\Cortana.exe    N/A      |
|    0   N/A  N/A     24848    C+G   ...ontend\Docker Desktop.exe    N/A      |
|    0   N/A  N/A     25804    C+G   ...y\ShellExperienceHost.exe    N/A      |
|    0   N/A  N/A     27064    C+G   ...8bbwe\WindowsTerminal.exe    N/A      |
+-----------------------------------------------------------------------------+

nvcc -V的输出:

Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Feb_14_22:08:44_Pacific_Standard_Time_2021
Cuda compilation tools, release 11.2, V11.2.152
Build cuda_11.2.r11.2/compiler.29618528_0

我运行了一个虚拟代码:

import tensorflow as tf
import numpy as np

def make_nn():
    model = tf.keras.models.Sequential()
    model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
    model.compile(loss='mean_squared_error', optimizer='sgd')
    return model

def dataset():
    x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
    y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])
    return tf.data.Dataset.from_tensor_slices((x, y)).batch(1)


def main():
    model = make_nn()
    model.fit(dataset(), epochs=1, steps_per_epoch=9)

if __name__ == '__main__':
    print(f"GPUs available: {tf.config.list_physical_devices('GPU')}")
    print(f"Built with cuda: {tf.test.is_built_with_cuda()}")

    main()

它给了我下面的日志:

GPUs available: []
Built with cuda: False
2023-02-06 09:47:32.744450: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2023-02-06 09:47:32.779280: I tensorflow/core/common_runtime/process_util.cc:146] Creating new thread pool with default inter op setting: 2. Tune using inter_op_parallelism_threads for best performance.

看起来它使用的是CPU版本

zlwx9yxi

zlwx9yxi1#

可能不是最好的解决方案,但我将TensorFlow降级回了之前安装的2. 6. 0版本,它工作正常,这是一个令人失望的问题,我想尝试一些更新的功能,但目前看起来这就足够了。如果有人面临同样的问题,this is the current conda environment that I'm using

qojgxg4l

qojgxg4l2#

如果你使用conda-forge,你可能需要设置环境变量CONDA_OVERRIDE_CUDA来强制安装支持gpu的tensorflow版本,如www.example.com所述https://conda-forge.org/docs/user/tipsandtricks.html#installing-cuda-enabled-packages-like-tensorflow-and-pytorch。

CONDA_OVERRIDE_CUDA="11.2" conda install "tensorflow==2.8" -c conda-forge

相关问题