我正在使用pytorch-1.5
做一些gan
测试。我的代码是非常简单的gan代码,正好适合sin(x)函数:
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Hyper Parameters
BATCH_SIZE = 64
LR_G = 0.0001
LR_D = 0.0001
N_IDEAS = 5
ART_COMPONENTS = 15
PAINT_POINTS = np.vstack([np.linspace(-1, 1, ART_COMPONENTS) for _ in range(BATCH_SIZE)])
def artist_works(): # painting from the famous artist (real target)
r = 0.02 * np.random.randn(1, ART_COMPONENTS)
paintings = np.sin(PAINT_POINTS * np.pi) + r
paintings = torch.from_numpy(paintings).float()
return paintings
G = nn.Sequential( # Generator
nn.Linear(N_IDEAS, 128), # random ideas (could from normal distribution)
nn.ReLU(),
nn.Linear(128, ART_COMPONENTS), # making a painting from these random ideas
)
D = nn.Sequential( # Discriminator
nn.Linear(ART_COMPONENTS, 128), # receive art work either from the famous artist or a newbie like G
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid(), # tell the probability that the art work is made by artist
)
opt_D = torch.optim.Adam(D.parameters(), lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(), lr=LR_G)
for step in range(10000):
artist_paintings = artist_works() # real painting from artist
G_ideas = torch.randn(BATCH_SIZE, N_IDEAS) # random ideas
G_paintings = G(G_ideas) # fake painting from G (random ideas)
prob_artist0 = D(artist_paintings) # D try to increase this prob
prob_artist1 = D(G_paintings) # D try to reduce this prob
D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1. - prob_artist1))
G_loss = torch.mean(torch.log(1. - prob_artist1))
opt_D.zero_grad()
D_loss.backward(retain_graph=True) # reusing computational graph
opt_D.step()
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
但当我运行它得到这个错误:
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [128, 1]], which is output 0 of TBackward, is at version 2; expected version 1 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck!
我的代码有什么问题吗?
3条答案
按热度按时间ktecyv1j1#
这是因为opt_D.step()在原处修改了鉴别器的参数,但这些参数是计算发生器梯度所必需的。您可以通过将代码更改为以下内容来解决此问题:
您可以在https://github.com/pytorch/pytorch/issues/39141中找到有关此问题的详细信息
6ie5vjzr2#
为什么它在1.4上可以工作,但在1.5中给予错误,一个普遍的原因是因为“在1.5之前,这些测试对于优化器来说不能正常工作。这就是为什么你没有看到任何错误。但是计算的梯度是不正确的。”
有关版本影响的详细讨论,请查看此链接:https://discuss.pytorch.org/t/solved-pytorch1-5-runtimeerror-one-of-the-variables-needed-for-gradient-computation-has-been-modified-by-an-inplace-operation/90256/4
rks48beu3#
我有一个类似的问题,我解决了它改变了我的 Torch 版本为1. 4,它为我工作