我正在寻找一种方法来消除子情节之间的垂直空间。我尝试使用fig.subplots_adjust(hspace=0)
,但似乎没有效果。有人知道如何做到这一点吗?
我将在下面添加我正在使用的代码(尽管它可能有点长),但是如果你想尝试自己运行它,这里有一个到我的github的链接,其中包含jupyter代码和我正在使用的文件
https://github.com/FrancescoAzzollini/Langmuir-Waves-Analysis
先谢谢你的帮助。
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import colors
import pandas as pd
import matplotlib.dates as mdates
from matplotlib.ticker import MaxNLocator
from matplotlib.colors import LogNorm
from matplotlib.pyplot import cm
event_start_time = dt.datetime(2002,4,25,5,56,6) # start time of the event
f2_header = 46 # 6 eV to 1113 eV
f3_header = 51 # 200 eV to 27 keV
f1_header = 72 # 27 keV up
spec_header = 43
date_for_path = '25-04-2002'
path = 'Langmuir waves analysis/' + date_for_path + '/'
spec_name = 'WI_H1_WAV_23030.csv'
f2_name = 'WI_ELSP_3DP_23030.csv' # ELSP
f3_name = 'WI_EHSP_3DP_23030.csv' # EHSP
f1_name = 'WI_SFSP_3DP_23030.csv' # SFSP
def arrival_time(E):
m = 9.1e-31
v = np.sqrt(3.2e-16 * E/m)
dist = 215*7e8
t = dist/v
return event_start_time + dt.timedelta(0,t)
df_spec = pd.read_csv(path + spec_name, header=spec_header, skipfooter=3)
df_spec['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'] = pd.to_datetime(df_spec['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'], format = '%Y-%m-%dT%H:%M:%S.%fZ')
dates_list = df_spec['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'].to_list()
x_lims_ = [dates_list[0].timestamp(), dates_list[-1].timestamp()]
x_lims = list(map(dt.datetime.fromtimestamp, x_lims_))
x_lims = mdates.date2num(x_lims)
y_lims0 = np.linspace(1075, 13825, 100)
y_lims1 = np.linspace(20, 1040, 100)
y_lims2 = np.linspace(4, 245, 100)
@plt.FuncFormatter
def fake_log(x, pos):
'The two args are the value and tick position'
return round(10**x) #r'$10^{%.2f}$' % (x)
df_spec = df_spec.set_index('EPOCH_yyyy-mm-ddThh:mm:ss.sssZ')
df_spec = df_spec[df_spec.columns[::-1]].T
df_spec0 = df_spec.iloc[353:-1, :]
df_spec1 = df_spec.iloc[95:353, :]
df_spec2 = df_spec.iloc[0:95, :]
date_format = mdates.DateFormatter('%H:%M:%S')
locator = mdates.HourLocator([4, 5, 6, 7, 8, 9])
fig, ax = plt.subplots(6, 1, figsize=(15,20), layout='compressed')
col_posit = -0.1
flare_time = dt.datetime.fromtimestamp(event_start_time.timestamp() + 3600)
flare_time = mdates.date2num(flare_time)
for a in ax:
a.set_anchor('W')
for a in ax:
a.patch.set_facecolor('black')
im = ax[0].imshow(df_spec0, norm=colors.LogNorm(), cmap=cm.inferno,
extent = [x_lims[0], x_lims[1], np.log10(y_lims0[0]), np.log10(y_lims0[-1])], aspect='auto')
fig.colorbar(im, ax=ax[0], pad=col_posit)
ax[0].xaxis.set(major_formatter=date_format)
ax[0].tick_params(bottom = False)
ax[0].set_xticks([])
ax[0].yaxis.set_major_formatter(fake_log)
ax[0].yaxis.set_major_locator(MaxNLocator(5))
ax[0].set_yticks(np.log10(np.array([2000, 5000, 10000])))
im = ax[1].imshow(df_spec1, norm=colors.LogNorm(), cmap=cm.inferno,
extent = [x_lims[0], x_lims[1], np.log10(y_lims1[0]), np.log10(y_lims1[-1])], aspect='auto')
fig.colorbar(im, ax=ax[1], pad=col_posit)
ax[1].xaxis.set(major_formatter=date_format)
ax[1].tick_params(bottom = False)
ax[1].set_xticks([])
ax[1].yaxis.set_major_formatter(fake_log)
ax[1].yaxis.set_major_locator(MaxNLocator(5))
ax[1].set_yticks(np.log10(np.array([20, 50, 100, 200, 500, 1000])))
im = ax[2].imshow(df_spec2, norm=colors.LogNorm(), cmap=cm.inferno,
extent = [x_lims[0], x_lims[1], np.log10(y_lims2[0]), np.log10(y_lims2[-1])], aspect='auto')
fig.colorbar(im, ax=ax[2], pad=col_posit)
ax[2].xaxis.set(major_formatter=date_format)
ax[2].tick_params(bottom = False)
ax[2].set_xticks([])
ax[2].yaxis.set_major_formatter(fake_log)
ax[2].yaxis.set_major_locator(MaxNLocator(5))
ax[2].set_yticks(np.log10(np.array([10, 20, 50, 100, 200])))
#second set of images
df1 = pd.read_csv(path + f1_name, header=f1_header, skipfooter=3)
df1['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'] = pd.to_datetime(df1['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'], format = '%Y-%m-%dT%H:%M:%S.%fZ')
df2 = pd.read_csv(path + f2_name, header=f2_header, skipfooter=3)
df2['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'] = pd.to_datetime(df2['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'], format = '%Y-%m-%dT%H:%M:%S.%fZ')
df3 = pd.read_csv(path + f3_name, header=f3_header, skipfooter=3)
df3['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'] = pd.to_datetime(df3['EPOCH_yyyy-mm-ddThh:mm:ss.sssZ'], format = '%Y-%m-%dT%H:%M:%S.%fZ')
i1, i2, i3 = 1, 1, 1
energies1 = [27, 40, 66, 108, 181, 310, 517]
energies2 = list(reversed(list(np.array([6, 7, 9, 13, 18, 27, 41, 65, 103, 164, 264, 426, 689, 1113])*1e-3)))
energies3 = list(reversed([0.137, 0.2, 0.29, 0.43, 0.64, 0.92, 1.34, 1.95, 2.85, 4.16, 6.08, 6.87, 12.97, 18.9, 27]))
#fig, ax = plt.subplots(3, 1, figsize=(10,10))
while i1 < 8 :
ax[5].plot(df1.iloc[:, 0], df1.iloc[:, i1], c=cm.rainbow([50*i1]))
ax[5].vlines(arrival_time(energies1[i1-1]), 0,0.3, color=cm.rainbow([50*i1]), label = str(energies1[i1-1]) + ' keV')
ax[5].set_xlim(df3.iloc[0, 0], df3.iloc[-1, 0])
ax[5].set_yscale("log")
plt.gcf().autofmt_xdate()
i1 += 1
while i2 < 15 :
ax[3].plot(df2.iloc[:, 0], df2.iloc[:, i2], c=cm.rainbow([20*i2]), label = str(round(energies2[i2-1]*1e3)) + ' eV')
ax[3].vlines(arrival_time(energies2[i2-1]), 0,4e8, color=cm.rainbow([20*i2]))
ax[3].set_xlim(df3.iloc[0, 0], df3.iloc[-1, 0])
ax[3].set_yscale("log")
i2 += 1
while i3 < 15 :
ax[4].plot(df3.iloc[:, 0], df3.iloc[:, i3], c=cm.rainbow([20*i3]), label = str(round(energies3[i3-1]*1e3)) + ' eV')
ax[4].vlines(arrival_time(energies3[i3-1]), 0,1e5, color=cm.rainbow([20*i3]))
ax[4].set_xlim(df3.iloc[0, 0], df3.iloc[-1, 0])
ax[4].set_yscale("log")
i3 += 1
ax[0].vlines(flare_time, np.log10(y_lims0[0]), np.log10(y_lims0[-1]), 'r')
ax[1].vlines(flare_time, np.log10(y_lims1[0]), np.log10(y_lims1[-1]), 'r')
ax[2].vlines(flare_time, np.log10(y_lims2[0]), np.log10(y_lims2[-1]), 'r')
ax[4].set_ylim(None, 8e4)
ax[3].set_ylim(top=3e8)
ax[5].set_ylim(top=0.2)
ax[3].set_xticks([])
ax[4].set_xticks([])
ax[3].legend(loc='upper left', bbox_to_anchor=(1, 1),fontsize = 11, frameon=False)
ax[4].legend(loc='upper left', bbox_to_anchor=(1, 1),fontsize = 11, frameon=False)
ax[5].legend(loc='upper left', bbox_to_anchor=(1, 1),fontsize = 11, frameon=False)
ax[5].set_xlabel('UT', fontsize = 20)
ax[1].set_ylabel('Frequency [kHz]', fontsize = 20)
ax[4].set_ylabel('Eletrons $cm^{-2} ster^{-1} s^{-1} eV^{-1}$', fontsize = 20)
plt.rc('ytick', labelsize=16)
plt.rc('xtick', labelsize=16)
#plt.show()
plt.savefig(path + "Spec_Plot_" + date_for_path, bbox_inches='tight')
1条答案
按热度按时间irlmq6kh1#
好消息是,今天早上我成功地解决了这个问题,我所做的是按照JohanC的建议去掉
layout='compressed'
,使用add_gridspec
和subgridspec
创建嵌套的子情节:两个外部子图,包含每个内部3x2子图。我使用a.set_visible(False)
将右列上的子图设置为不可见,然后操纵它们的相对宽度,使x轴对齐并获得所需的结果。我用新的工作代码更新了我的Github存储库。感谢大家的帮助:)