opencv 检查两个轮廓是否相交?

klsxnrf1  于 2023-02-09  发布在  其他
关注(0)|答案(4)|浏览(576)

我有两个从cv2.findContours()接收到的等值线(cont1cont2)。我如何知道它们是否相交?我不需要坐标,我只需要一个布尔值TrueFalse
我尝试了不同的方法,并已尝试与

if ((cont1 & cont2).area() > 0):

...但得到数组没有方法“Area()”的错误

...
cont1array = cv2.findContours(binary1, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
cont2array = cv2.findContours(binary2, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[0]
...

for cont1 in cont1array:
  for cont2 in cont2array:
    print("cont1")
    print(cont1)
    print(type(cont1))
    print("cont2")
    print(cont2)
    print(type(cont2))
>   if cont1 and cont2 intersect: #i dont know how check intersect
      print("yes they intersect")
    else:
      print("no they do not intersect")

# cont1
# [[172 302]
#  [261 301]
#  [262 390]
#  [173 391]]
# <class 'numpy.ndarray'>
# cont2
# [[  0   0]
#  [  0 699]
#  [499 699]
#  [499   0]]
# <class 'numpy.ndarray'>
f4t66c6m

f4t66c6m1#

nathancy给出的答案是可行的,但是在性能方面受到了影响,例如创建3个图像副本来绘制轮廓,在执行时间方面表现迟缓。
我的另一种回答如下:

def contour_intersect(cnt_ref,cnt_query, edges_only = True):
    
    intersecting_pts = []
    
    ## Loop through all points in the contour
    for pt in cnt_query:
        x,y = pt[0]

        ## find point that intersect the ref contour
        ## edges_only flag check if the intersection to detect is only at the edges of the contour
        
        if edges_only and (cv2.pointPolygonTest(cnt_ref,(x,y),True) == 0):
            intersecting_pts.append(pt[0])
        elif not(edges_only) and (cv2.pointPolygonTest(cnt_ref,(x,y),True) >= 0):
            intersecting_pts.append(pt[0])
            
    if len(intersecting_pts) > 0:
        return True
    else:
        return False

编辑!!

测试完这段代码后,意识到当轮廓线上没有两个相似点时,这种检查会失败。因此,我重写了检查两条轮廓线相交的算法。

def ccw(A,B,C):
    return (C[1]-A[1]) * (B[0]-A[0]) > (B[1]-A[1]) * (C[0]-A[0])

def contour_intersect(cnt_ref,cnt_query):

    ## Contour is a list of points
    ## Connect each point to the following point to get a line
    ## If any of the lines intersect, then break

    for ref_idx in range(len(cnt_ref)-1):
    ## Create reference line_ref with point AB
        A = cnt_ref[ref_idx][0]
        B = cnt_ref[ref_idx+1][0] 
    
        for query_idx in range(len(cnt_query)-1):
            ## Create query line_query with point CD
            C = cnt_query[query_idx][0]
            D = cnt_query[query_idx+1][0]
        
            ## Check if line intersect
            if ccw(A,C,D) != ccw(B,C,D) and ccw(A,B,C) != ccw(A,B,D):
                ## If true, break loop earlier
                return True

    return False
wkyowqbh

wkyowqbh2#

一旦得到cv2.findContours()的两个轮廓,就可以使用AND的位运算来检测交点。我们可以使用np.logical_and(),其思想是为每个轮廓创建两个单独的图像,然后对它们使用逻辑AND操作。(1True)将是交点,因此,由于您只需要获取是否存在交点的布尔值,我们可以检查相交图像,看看是否存在单个正值。如果整个阵列是False,则轮廓线之间没有相交,但是如果存在单个True,则轮廓线接触并因此相交。

def contourIntersect(original_image, contour1, contour2):
    # Two separate contours trying to check intersection on
    contours = [contour1, contour2]

    # Create image filled with zeros the same size of original image
    blank = np.zeros(original_image.shape[0:2])

    # Copy each contour into its own image and fill it with '1'
    image1 = cv2.drawContours(blank.copy(), [contours[0]], 0, 1)
    image2 = cv2.drawContours(blank.copy(), [contours[1]], 1, 1)
    
    # Use the logical AND operation on the two images
    # Since the two images had bitwise and applied to it,
    # there should be a '1' or 'True' where there was intersection
    # and a '0' or 'False' where it didnt intersect
    intersection = np.logical_and(image1, image2)
    
    # Check if there was a '1' in the intersection
    return intersection.any()
    • 示例**

原始图像

检测轮廓

我们现在将两个检测到的轮廓传递给函数并获得这个交集数组:

[[False False False ... False False False]
 [False False False ... False False False]
 [False False False ... False False False]
 ...
 [False False False ... False False False]
 [False False False ... False False False]
 [False False False ... False False False]]

我们检查intersection数组,看看True是否存在,在等值线相交的地方得到True1,在等值线不相交的地方得到False0

return intersection.any()

因此我们得到

完整代码

import cv2
import numpy as np

def contourIntersect(original_image, contour1, contour2):
    # Two separate contours trying to check intersection on
    contours = [contour1, contour2]

    # Create image filled with zeros the same size of original image
    blank = np.zeros(original_image.shape[0:2])

    # Copy each contour into its own image and fill it with '1'
    image1 = cv2.drawContours(blank.copy(), contours, 0, 1)
    image2 = cv2.drawContours(blank.copy(), contours, 1, 1)
    
    # Use the logical AND operation on the two images
    # Since the two images had bitwise AND applied to it,
    # there should be a '1' or 'True' where there was intersection
    # and a '0' or 'False' where it didnt intersect
    intersection = np.logical_and(image1, image2)
    
    # Check if there was a '1' in the intersection array
    return intersection.any()

original_image = cv2.imread("base.png")
image = original_image.copy()

cv2.imshow("original", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow("gray", gray)
blurred = cv2.GaussianBlur(gray, (5,5), 0)
cv2.imshow("blur", blurred)
threshold = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1]
cv2.imshow("thresh", threshold)

contours = cv2.findContours(threshold.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Depending on OpenCV version, number of arguments return by cv.findContours 
# is either 2 or 3
contours = contours[1] if len(contours) == 3 else contours[0]

contour_list = []
for c in contours:
    contour_list.append(c)
    cv2.drawContours(image, [c], 0, (0,255,0), 2)

print(contourIntersect(original_image, contour_list[0], contour_list[1]))
cv2.imshow("contour", image)
cv2.waitKey(0)
bxgwgixi

bxgwgixi3#

@Ivans和@nathancys的答案是我在这里看到的最好的答案。然而,画线仍然是计算密集型的,特别是当你的轮廓中有很多点的时候,而直接计算位与会损害性能,特别是当你的画布很大的时候。提高性能的一个简单方法是首先检查bbox的交集;如果你看到bbox不相交,你就知道轮廓线不相交。如果你的bbox相交,只要为两个轮廓线绘制最小的填充(或轮廓)ROI,然后计算一个简单的逐位与。我发现这与这里列出的其他技术相比提供了显著的加速比,并防止了在大画布上处理大而复杂的轮廓线的问题。我使用torch来计算bbox ious,以实现简单/清晰。

import cv2
import numpy as np
import torchvision.ops.boxes as bops

def contour_intersect(cnt_ref, cnt_query):
    ## Contours are both an np array of points
    ## Check for bbox intersection, then check pixel intersection if bboxes intersect

    # first check if it is possible that any of the contours intersect
    x1, y1, w1, h1 = cv2.boundingRect(cnt_ref)
    x2, y2, w2, h2 = cv2.boundingRect(cnt_query)
    # get contour areas
    area_ref = cv2.contourArea(cnt_ref)
    area_query = cv2.contourArea(cnt_query)
    # get coordinates as tensors
    box1 = torch.tensor([[x1, y1, x1 + w1, y1 + h1]], dtype=torch.float)
    box2 = torch.tensor([[x2, y2, x2 + w2, y2 + h2]], dtype=torch.float)
    # get bbox iou
    iou = bops.box_iou(box1, box2)

    if iou == 0:
        # bboxes dont intersect, so contours dont either
        return False
    else:
        # bboxes intersect, now check pixels
        # get the height, width, x, and y of the smaller contour
        if area_ref >= area_query:
            h = h2
            w = w2
            x = x2
            y = y2
        else:
            h = h1
            w = w1
            x = x1
            y = y1

        # get a canvas to draw the small contour and subspace of the large contour
        contour_canvas_ref = np.zeros((h, w), dtype='uint8')
        contour_canvas_query = np.zeros((h, w), dtype='uint8')
        # draw the pixels areas, filled (can also be outline)
        cv2.drawContours(contour_canvas_ref, [cnt_ref], -1, 255, thickness=cv2.FILLED,
                         offset=(-x, -y))
        cv2.drawContours(contour_canvas_query, [cnt_query], -1, 255, thickness=cv2.FILLED,
                         offset=(-x, -y))

        # check for any pixel overlap
        return np.any(np.bitwise_and(contour_canvas_ref, contour_canvas_query))
njthzxwz

njthzxwz4#

为了处理一个轮廓包含另一个轮廓的情况,我们可以替换

image1 = cv2.drawContours(blank.copy(), contours, 0, 1)
image2 = cv2.drawContours(blank.copy(), contours, 1, 1)

Nathancy的回答

image1 = cv2.fillPoly(blank.copy(), [contour1], 1)
image2 = cv2.fillPoly(blank.copy(), [contour2], 1)

相关问题