如何在MATLAB中找到小波变换图像压缩系数的局部阈值

xfb7svmp  于 2023-02-13  发布在  Matlab
关注(0)|答案(1)|浏览(177)

我正在MATLAB中尝试使用多层3D DWT(彩色图像)编写图像压缩脚本。在此过程中,我希望对系数矩阵应用阈值处理,包括全局阈值和局部阈值。我喜欢使用以下公式来计算局部阈值:

其中sigma是方差,N是元素的数量。
全局阈值处理工作良好;但是,我的问题是,所计算的局部阈值(最经常地!)大于最大频带系数,因此不应用阈值化。
其他一切都很好,我也得到了结果,但我怀疑局部阈值计算错误。而且,结果图像比原始图像大!我希望得到任何帮助,正确的方法来计算局部阈值,或者如果有一个预先设置的MATLAB函数。
下面是一个示例输出:

下面是我代码:

clear;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%    COMPRESSION    %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% read base image
% dwt 3/5-L on base images
% quantize coeffs (local/global)
% count zero value-ed coeffs
% calculate mse/psnr
% save and show result

% read images
base = imread('circ.jpg');
fam = 'haar'; % wavelet family
lvl = 3; % wavelet depth
% set to 1 to apply global thr
thr_type = 0;
% global threshold value
gthr = 180;

% convert base to grayscale
%base = rgb2gray(base);

% apply dwt on base image
dc = wavedec3(base, lvl, fam);

% extract coeffs
ll_base = dc.dec{1};
lh_base = dc.dec{2};
hl_base = dc.dec{3};
hh_base = dc.dec{4};

ll_var = var(ll_base, 0);
lh_var = var(lh_base, 0);
hl_var = var(hl_base, 0);
hh_var = var(hh_base, 0);

% count number of elements
ll_n = numel(ll_base);
lh_n = numel(lh_base);
hl_n = numel(hl_base);
hh_n = numel(hh_base);

% find local threshold
ll_t = ll_var * (sqrt(2 * log2(ll_n)));
lh_t = lh_var * (sqrt(2 * log2(lh_n)));
hl_t = hl_var * (sqrt(2 * log2(hl_n)));
hh_t = hh_var * (sqrt(2 * log2(hh_n)));

% global
if thr_type == 1
    ll_t = gthr; lh_t = gthr; hl_t = gthr; hh_t = gthr;
end

% count zero values in bands
ll_size = size(ll_base);
lh_size = size(lh_base);
hl_size = size(hl_base);
hh_size = size(hh_base);

% count zero values in new band matrices
ll_zeros = sum(ll_base==0,'all');
lh_zeros = sum(lh_base==0,'all');
hl_zeros = sum(hl_base==0,'all');
hh_zeros = sum(hh_base==0,'all');

% initiate new matrices
ll_new = zeros(ll_size);
lh_new = zeros(lh_size);
hl_new = zeros(lh_size);
hh_new = zeros(lh_size);

% apply thresholding on bands
% if new value < thr => 0
% otherwise, keep the previous value
for id=1:ll_size(1)
    for idx=1:ll_size(2)
        if ll_base(id,idx) < ll_t
            ll_new(id,idx) = 0;
        else
            ll_new(id,idx) = ll_base(id,idx);
        end
    end
end
for id=1:lh_size(1)
    for idx=1:lh_size(2)
       if lh_base(id,idx) < lh_t
           lh_new(id,idx) = 0;
       else
           lh_new(id,idx) = lh_base(id,idx);
       end
    end
end
for id=1:hl_size(1)
    for idx=1:hl_size(2)
       if hl_base(id,idx) < hl_t
           hl_new(id,idx) = 0;
       else
           hl_new(id,idx) = hl_base(id,idx);
       end
    end
end
for id=1:hh_size(1)
    for idx=1:hh_size(2)
       if hh_base(id,idx) < hh_t
           hh_new(id,idx) = 0;
       else
           hh_new(id,idx) = hh_base(id,idx);
       end
    end
end

% count zeros of the new matrices
ll_new_size = size(ll_new);
lh_new_size = size(lh_new);
hl_new_size = size(hl_new);
hh_new_size = size(hh_new);

% count number of zeros among new values
ll_new_zeros = sum(ll_new==0,'all');
lh_new_zeros = sum(lh_new==0,'all');
hl_new_zeros = sum(hl_new==0,'all');
hh_new_zeros = sum(hh_new==0,'all');

% set new band matrices
dc.dec{1} = ll_new;
dc.dec{2} = lh_new;
dc.dec{3} = hl_new;
dc.dec{4} = hh_new;

% count how many coeff. were thresholded
ll_zeros_diff = ll_new_zeros - ll_zeros;
lh_zeros_diff = lh_zeros - lh_new_zeros;
hl_zeros_diff = hl_zeros - hl_new_zeros;
hh_zeros_diff = hh_zeros - hh_new_zeros;

% show coeff. matrices vs. thresholded version
figure
colormap(gray);
subplot(2,4,1); imagesc(ll_base); title('LL');
subplot(2,4,2); imagesc(lh_base); title('LH');
subplot(2,4,3); imagesc(hl_base); title('HL');
subplot(2,4,4); imagesc(hh_base); title('HH');
subplot(2,4,5); imagesc(ll_new); title({'LL thr';ll_zeros_diff});
subplot(2,4,6); imagesc(lh_new); title({'LH thr';lh_zeros_diff});
subplot(2,4,7); imagesc(hl_new); title({'HL thr';hl_zeros_diff});
subplot(2,4,8); imagesc(hh_new); title({'HH thr';hh_zeros_diff});

% idwt to reconstruct compressed image
cmp = waverec3(dc);
cmp = uint8(cmp);

% calculate mse/psnr
D = abs(cmp - base) .^2;
mse  = sum(D(:))/numel(base);
psnr = 10*log10(255*255/mse);

% show images and mse/psnr
figure
subplot(1,2,1);
imshow(base); title("Original"); axis square;
subplot(1,2,2);
imshow(cmp); colormap(gray); axis square;
msg = strcat("MSE: ", num2str(mse), " | PSNR: ", num2str(psnr));
title({"Compressed";msg});

% save image locally
imwrite(cmp, 'compressed.png');
yhqotfr8

yhqotfr81#

我解决了这个问题。局部阈值公式中的sigma不是方差,而是标准差。我应用了以下步骤:
1.使用stdfilt()std2()来查找系数矩阵的标准差(感谢@Rotem指出这一点)
1.使用numel()计算系数矩阵中的元素数量
这是一个过程的总结。它是相同的其他波段(LH,HL,HH))

[c, s] = wavedec2(image, wname, level); %apply dwt
ll = appcoeff2(c, s, wname); %find LL
ll_std = std2(ll); %find standard deviation
ll_n = numel(ll); %find number of coeffs in LL
ll_t = ll_std * (sqrt(2 * log2(ll_n))); %local the formula
ll_new = ll .* double(ll > ll_t); %thresholding

1.在for循环中替换c中的LL值
1.通过使用waverec2应用IDWT进行重构
以下是示例输出:第一节第一节第一节第一节第一次

相关问题